823 resultados para canapa rinforzo fibre naturali legno
Resumo:
A new double-layer grating template is designed to reduce the out-of-band loss as much as 1.8dB when the loss of LP03 reaches 10.2 dB. Meanwhile, we propose a method to remove the sidelobes in the transmission spectra by the adjustment of the thickness of pressure plates. The plate-thickness-induced shift of resonant wavelength and the attenuation of loss peak intensity when removing sidelobes can be modified by the fibre distance and contact point on the pressure plates.
Resumo:
We present a linear-cavity stretched-pulse fibre laser with mode locking by a nonlinear polarization rotation and by semiconductor saturable-absorber mirrors. A Q-switched mode-locking cw train and a mode-locking pulse train are obtained in the experiment. We investigate the effects of the equivalent fast saturable absorber and the slow saturable absorbers in experiment. It is found that neither the nonlinear polarization evolution effect nor a semiconductor saturable absorber mirror is enough to produce the stable cw mode-locking pulses in this experiment. A nonlinear polarization evolution effect controls the cavity loss to literally carve the pulses; semiconductor saturable absorber mirrors provide the self-restarting and maintain the stability of the mode-locking operation.
Resumo:
Experimental demonstrations of the use of a self-imaging resonator in the phase locking of two fibre lasers are presented. The output power of the phase-locked fibre laser array exceeded 2 W Successful attempts of phase locking show that the fibre laser array is not only capable of producing high Output Power but also large on-axis intensity by this method.
Resumo:
A kind of ultra-narrow dual-channel filter is proposed in principle and demonstrated experimentally. This filter is designed by means of two sampled fibre Bragg gratings (SFBGs), where one is periodic 0-pi sampling and the other is symmetrical spatial sampling. The former can create two stopbands in the transmission spectra and the latter can produce two ultra-riarrow passbands. Our filter has the 3-dB bandwidth of about 1 pm, whose value is two orders of magnitude less than the bandwidth of the traditional SFBG filters. The proposed filter has a merit that the channel spacing remains unchanged when tuning the filter.
Resumo:
We demonstrate a harmonic mode-locked ytterbium-doped fibre ring laser, which consists of a polarization-sensitive isolator, two polarization controllers, two 976 nm laser diodes as the pump source and a two-segment ytterbium-doped fibre. Utilizing an additive pulse mode-locked technique based on nonlinear polarization evolution, the ytterbium-doped fibre laser can operate in mode-locked state by adjusting the position of polarization controllers. The cavity fundamental repetition rate is 23.78 MHz. We also observe the second- and third-harmonic mode locking in the normal dispersion region, and their repetition rates are 47.66 MHz and 71.56 MHz, respectively. Over-driving of the saturable absorber in the harmonic mode-locking pulse is analysed and discussed in detail.
Resumo:
We report the generation of ultrashort pulses in ytterbium-doped fibre oscillator emitting around 1.05 mum at a repetition rate of 17.6MHz. A diode laser with single silica fibre at 976 nm pumps the ytterbium fibre laser, the all-fibre picosecond pulsed oscillator has excellent stability and compact size, and freedom from misalignment. After amplifying, pulse energy of 3.4 nJ and an average power of 60mW are obtained. The compression is obtained with a grating pair out of the cavity. The compressor produces 307 fs with the peak power 5.47 kW. A practical fibre-based source with good performance is thus demonstrated.
Resumo:
On the basis of self-stability effect of four-wave mixings (FWMs) in high-nonlinear photonic-crystal fibres, a novel multi-wavelength erbium-doped fibre (EDF) laser is proposed and demonstrated experimentally at room temperature. The proposed lasers have the capacity of switching and tuning with excellent uniformity and stability. By means of adjusting the attenuators, the triple-, four-, or five-wavelength EDF lasers can be lasing simultaneously. With the assistance of the FWM self-stability function, the multi-wavelength spectrum is excellently stabilized with uniformity less than 0.9 dB.
Resumo:
With the assistance of a kind of photonic Robin Hood that is originated from four-wave mixing in a dispersion-flattened high-nonlinearity photonic-crystal fibre, a novel dual-wavelength erbium-doped fibre (EDF) laser is proposed and demonstrated by using a sampled fibre Bragg grating. The experiments show that, due to the contribution of the photonic Robin Hood, the proposed fibre laser has the advantage of excellent uniformity, high stability and stable operation at room temperature. Our dual-wavelength EDF laser has the unique merit that the wavelength spacing remains unchanged when tuning the two wavelengths of laser, and this laser is simpler and more stable than the laser reported by Liu et al. [Opt. Express, 13 142 (2005)].
Resumo:
In this paper, polarization properties and propagation characteristics of polymer photonic crystal fibres with elliptical core and non-hexagonal symmetry structure are investigated by using the full vectorial plane wave method. The results how that the birefringence of the fibreis induced by asymmetries of both the cladding and the core. Moreover, by adjusting the non-symmetrical ratio factor of cladding eta from 0.4 to 1 in step 0.1, we find the optimized design parameters f the fibre with high birefringence and limited polarization mode dispersion, operating in a single mode regime at an appropriate wavelength range. The range of wavelength approaches the visible and near-infrared which is consistent with the communication windows of polymer optical fibres.
Resumo:
We report the generation of 207-fs pulses with 1.2mW average power at 1036 nm directly from a passively mode-locked Yb-doped fibre laser with a nonlinear optical loop mirror for mode-locking and pairs of diffraction gratings for intracavity dispersion compensation. These results imply a 4-fold reduction in pulse duration over previously reported figure-of-eight cavity passively mode-locked Yb-doped fibre lasers. Stable pulse trains are produced at the fundamental repetition rate of the resonator, 24.0MHz. On the other hand, this laser offers a cleaner spectrum and greater stability and is completely self-starting.
Resumo:
We present a broadly tunable active mode- locked. bre ring laser based on a semiconductor optical ampli. er ( SOA), with forward injection optical pulses. The laser can generate pulse sequence with pulsewidth about 12 ps and high output power up to 8.56dBm at 2.5 GHz stably. Incorporated with a wavelength- tunable optical bandpass. lter, the pulse laser can operate with a broad wavelength tunable span up to 37nm with almost constant pulsewidth. A detailed experimental analysis is also carried out to investigate the relationship between the power of the internal cavity and the pulsewidth of the output pulse sequence. The experimental con. guration of the pulse laser is very simple and easy to setup with no polarization- sensitive components.
Resumo:
A monolithic structured polymer preform was formed by in-situ chemical polymerization of high-purity MMA monomer in a home-made mould. The conditions for fabrication of the preforms were optimized and the preform was drawn to microstructured polymer optical fibre. The optical properties of the resultant elliptical-core fibre were measured. This technique provides advantages over alternative preform fabrication methods such as drilling and capillary stacking, which are less suitable for mass production. (c) 2006 Optical Society of America.
Resumo:
In this article, we report an optical fluoride probe based on microstructured polymer optical fibers (MPOFs) which is modified with morin-Al complex doped silica gel film. This probe is fabricated by sol-gel fluxion coating process. Sol solution doped with morin-Al is directly inhaled into array holes of MPOF and then forms morin-Al-gel matrix film in them. The sensing probe shows different fluorescence intensity to different fluoride ion concentrations in the aqueous solution. The range of response is 550 mmol/L, under the condition of pH 4.6. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
A four-phase confocal elliptical cylinder model is proposed from which a generalised self-consistent method is developed for predicting the thermal conductivity of coated fibre reinforced composites. The method can account for the influence of the fibre section shape ratio on conductivity, and the physical reasonableness of the model is demonstrated by using the fibre distribution function. An exact solution is obtained for thermal conductivity by applying conformal mapping and Laurent series expansion techniques of the analytic function. The solution to the three-phase confocal elliptical model, which simulates composites with idealised fibre-matrix interfaces, is arrived at as the degenerated case. A comparison with other available micromechanics methods, Hashin and Shtrikman's bounds and experimental data shows that the present method provides convergent and reasonable results for a full range of variations in fibre section shapes and for a complete spectrum of the fibre volume fraction. Numerical results show the dependence of the effective conductivities of composites on the aspect ratio of coated fibres and demonstrate that a coating is effective in enhancing the thermal transport property of a composite. The present solutions are helpful to analysis and design of composites.