941 resultados para bivalent metal ions
Resumo:
Actually, surveys have been developed for obtaining new materials and methodologies that aim to minimize environmental problems due to discharges of industrial effluents contaminated with heavy metals. The adsorption has been used as an alternative technology effectively, economically viable and potentially important for the reduction of metals, especially when using natural adsorbents such as certain types of clay. Chitosan, a polymer of natural origin, present in the shells of crustaceans and insects, has also been used for this purpose. Among the clays, vermiculite is distinguished by its good ion exchange capacity and in its expanded form enhances its properties by greatly increasing its specific surface. This study aimed to evaluate the functionality of the hybrid material obtained through the modification of expanded vermiculite with chitosan in the removal of lead ions (II) in aqueous solution. The material was characterized by infrared spectroscopy (IR) in order to evaluate the efficiency of modification of matrix, the vermiculite, the organic material, chitosan. The thermal stability of the material and the ratio clay / polymer was evaluated by thermogravimetry. To evaluate the surface of the material was used in scanning electron microscopy (SEM) and (BET). The BET analysis revealed a significant increase in surface area of vermiculite that after interaction with chitosan, was obtained a value of 21, 6156 m2 / g. Adsorption tests were performed according to the particle size, concentration and time. The results show that the capacity of removal of ions through the vermiculite was on average 88.4% for lead in concentrations ranging from 20-200 mg / L and 64.2% in the concentration range of 1000 mg / L. Regarding the particle size, there was an increase in adsorption with decreasing particle size. In fuction to the time of contact, was observed adsorption equilibrium in 60 minutes with adsorption capacity. The data of the isotherms were fitted to equation Freundlich. The kinetic study of adsorption showed that the pseudo second- order model best describes the adsorption adsorption, having been found following values K2=0,024 g. mg-1 min-1and Qmax=25,75 mg/g, value very close to the calculated Qe = 26.31 mg / g. From the results we can conclude that the material can be used in wastewater treatment systems as a source of metal ions adsorbent due to its high adsorption capacity
Resumo:
Phytase (myo-inositol hexaphosphate phosphohydrolase) and phytic acid (myo-inositol hexaphosphate) play an important environmental role, in addition to being a health issue in food industry. Phytic acid is antinutritional due to its ability to chelate metal ions and may also react with proteins decreasing their bioavailability. In this work, we produced biosensors with phytase immobilized in Layer-by-Layer (LbL) films, which could detect phytic acid with a detection limit of 0.19 mmol L-1, which is sufficient to detect phytic acid in seeds of grains and vegetables. The biosensosrs consisted of LbL films containing up to eight bilayers of phytase alternated with poly(allylamine) hydrochloride (PAH) deposited onto an indium-tin oxide (ITO) substrate modified with Prussian Blue. Amperometric detection was conducted in an acetate buffer solution (at pH 5.5) at room temperature, with the biosensor response attributed to the formation of phosphate ions. In subsidiary experiments with the currents measured at 0.0 V (vs. SCE), we demonstrated the absence of effects from some interferents, pointing to a good selectivity of the biosensor. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The groundwater represents the most important freshwater supply of planet. Dailly, in all world a great amount of toxic and genotoxic material reaches the aquatic systems, mainly the aquifers. The Barreiras aquifer through of five water wells is responsible for the supplying of Universidade Federal do Rio Grande do Norte (UFRN). All water wells are polluted with nitrate and some heavy metals, two of them were disabled. The genotoxicity of groundwater samples from Barreiras Aquifer in UFRN was assessed using the Allium cepa test, the Ames test and the Salmonella typhymurium microsuspension test (Kado test). For the Allium cepa test the influence of the groundwater samples collected on macroscopic (root length, colour and form) and microscopic (root tip mitotic index, chromosome aberrations and micronucleus) parameters was examined. All water samples caused a significant increase of the chromosome and mitotic aberration frequency and reduction on the rooth growth compared to negative control. Bridges and chromosome stickness were the most frequent kind of aberration in dividing cells. Furthermore, breaks were also observed. No significant increase in the number of micronuclei was found in relation to the negative controls. For Ames test were used the Salmonella typhymurium strains TA98 and TA100 without metabolic activation, applying the direct method. Prior to the Kado test, organic fractions from the water samples were obtained through XAD resin concentration. The mutagenicity organic extracts were evaluated by Kado test using TA98 and TA100 strains, in the absence and presence of S9 mix (metabolic activation). The concentrations of seven heavy metal ions were measured in water samples, but only Ni, Cu and Cr levels exceeded the permissible maximum concentration for the natural reservoirs. The results obtained for mutagenic activity using the Ames test were negative in all raw water samples analyzed. Positive results in XAD4 extracts of water samples were obtained for TA98 in the presence of S9 mix for two stations. Concentrations of heavy metals and nitrate can be correlated with the toxicity and genotoxicity of water analyzed. The mutagenic effect detected with TA98 strain suggested that organic compounds (after metabolization) are involved with the mutagenicity detected in the samples analyzed. The data set obtained in this work indicated the presence of at least two classes of mutagens: organic and inorganic compounds
Resumo:
Nanoparticles of octakis[3-(3-amino-1,2,4-triazole)propyl]octasilsesquioxane (ATZ-SSQ) were tested as ligands, for transition-metal ions in aqueous solution with a special attention to sorption isotherms, ligand-metal interaction, and determination of metal ions in natural waters. The adsorption potential of the material ATZ-SSQ was compared with related [3(3-amino-1,2,4-triazole)propyl]silica gel (ATZ-SG). The adsorption was performed using a batchwise process and both organofunctionalized surfaces showed the ability to adsorb the metal ions from aqueous solution. The Langmuir model was used to simulate the sorption isotherms. The results suggest that the sorption of these metals on ATZ-SSQ and ATZ-SG occurs mainly by surface complexation. The equilibrium condition is reached at time lower than 3 min for ATZ-SSQ, while for ATZ-SG is only reached at time of 25 min. The maximum metal ion uptake values for ATZ-SSQ were higher than the corresponding values achieved with the ATZ-SG. In order to obtain more information on the ligand-metal interaction of the complexes on the surface of the ATZ-SSQ nanomaterial, ESR study with various degrees of copper loadings was carried out. The ATZ-SSQ was tested for the determination (in flow using a column technique) of the metal ions present in natural waters. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The organo-clay used in this work was prepared from a Na-montmorillonite (Wyoming-USA deposit) by treatment with water solution of hexadecyltrimethylammonium cations. As organo-clays exhibit strong sorptive capabilities for organic molecules, 2-mercapto-5-amino-1,3,4-thiadiazole organofunctional groups, with potential usefulness in chemical analysis, were incorporated on its solid surface. The physically adsorbed reagent did not present any restrictions in coordinating with several metal ions on the surface. The resultant organo-clay complex exhibited strong sorptive capability for removing mercury ions from water in which other metals and ions were also present. The purpose of this work is to study the selective separation of mercury(II) from aqueous solution using the organo-clay complex, measured by batch and chromatographic column techniques, and its application as preconcentration agent in a chemically modified carbon paste electrode for determination of mercury(II) in aqueous solution.
Resumo:
Given the large existing biodiversity in the Brazilian coast, where many species are still little known, even under the nutritional aspect, and considering that bivalve molluscs are constituted by a natural resource of well accepted by the population, chose the bivalve Anadara notabilis, it was not found in the literature any nutritional or toxicological information about it and because its size is much larger than other species of mollusks commonly found in this region. Were studied moisture, ash, protein, macro and micro minerals, and metal ions of toxicological significance. All analytical determinations followed the standards of the Institute Adolfo Lutz. The protein determination was performed by the Kjeldahl method. All metal ions were determined by optical emission spectroscopy with inductively coupled plasma (ICP-OES) method described by USEPA 6010C. The results showed that Anadara notabilis can be introduced into food for human beings, in view of its mineral wealth. Noteworthy among the macronutrients phosphorus and magnesium showed that their values in mg / kg 918.7 and 586.7. With regard to micronutrients stand out with this iron 586.7 mg / kg and zinc with 12.31 mg / kg. Was not found high content of metal contaminants to this mollusc, which would prevent their use, only this chromium 0.7 mg / kg above the value established by Brazilian legislation. The results will certainly be very useful in future studies of nutrition and to build a table of chemical composition of Brazilian foods
Resumo:
In this work, chitosan was used as a coating of pure perlite in order to increase the accessibility of the groups OH- e NH2+the adsorptionof ions Mn2+ e Zn2+.The characterization results of the expanded perlite classified as microporous and whose surface area 3,176 m2 g-1after the change resulted in 4,664 m2g-1.From the thermogravimetry(TG) it was found that the percentage of coating was34,3%.The infrared analysis can prove the presence of groups Si-OH, Si-O e Al-O-Siresulting from the perlite and C=O, NH2and OH characterization of chitosan. The experiments on experiments on the adsorption of Mn and Zn were performed in the concentration range of10 a 50 mgL-1and the adsorption capacity inpH 5,8 e 5,2 was 19,49 and 23,09 mgg-1to 25 oC,respectively.The adsorption data were best fitted to Langmuir adsorption model to Langmuir adsorption model for both metalionsisindicative of monolayer adsorption. The kinetics of adsorption were calculated from the equation of Lagergren fitting the model pseudo-second-order for all initial concentrations, suggesting that adsorption of ions Mn2+ and Zn2+ follows the kinetics of pseudo-second-order and whose constant Speedk2(g/mg.min) are 0,105 e 3,98 and capacity and maximum removal qe 4,326 e 3,348,respectively.In this study we used a square wave voltammetry cathodic stripping voltammetry to quantify the adsorbed ions, and the working electrode glassy carbon, reference electrode silver / silver chloride and a platinum auxiliary electrode. The attainment of the peaks corresponding to ions Mn2+ and Zn2+ was evaluated in and electrochemical cell with a capacity of 30 mL using a buffer system (Na2HPO4/NaH2PO4)at pH 4 and was adjusted with solutionsH3PO4 0,1molL-1and NaOH 0,1 molL-1and addition of the analyte has been a cathodic peak in- 0,873 Vand detection limit of2,55x10-6molL-1para Zn.The dough used for obtaining the adsorption isotherm was 150 mg and reached in 120 min time of equilibrium for both metal ions.The maximum adsorption for 120 min with Mn concentration 20 mgL-1 and Zn 10 mgL-1,was91, 09 e 94, 34%, respectively
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Leather tanneries generate effluents with high content of heavy metals, especially chromium, which is used in the mineral tanning process. Microemulsions have been studied in the extraction of heavy metals from aqueous solutions. Considering the problems related with the sediment resulting from the tanning process, due to its high content in chromium, in this work this sediment was characterized and microemulsion systems were applied for chromium removal. The extraction process consists in the removal of heavy metal ions present in an aqueous feeding solution (acid digestion solution) by a microemulsion system. First three different solid sludge digestion methods were evaluated, being chosen the method with higher digestion capacity. For this digestion method, seeking its optimization, was evaluated the influence of granule size, temperature and digestion time. Experimental results showed that the method proposed by USEPA (Method A) was the most efficient one, being obtained 95.77% of sample digestion. Regarding to the evaluated parameters, the best results were achieved at 95°C, 14 Mesh granule size, and 60 minutes digestion time. For chromium removal, three microemulsion extraction methods were evaluated: Method 1, in a Winsor II region, using as aqueous phase the acid digestion solution; Method 2, in a Winsor IV region, being obtained by the addition of the acid digestion solution to a microemulsion phase, whose aqueous phase is distilled water, until the formation of Winsor II system; and Method 3, in a Winsor III region, consisting in the formation of a Winsor III region using as aqueous phase the acid digestion solution, diluted in NaOH 0.01N. Seeking to optimize the extraction process only Method 1 (Systems I, II, and VIII) and Method 2 (System IX) were evaluated, being chosen points inside the interest regions (studied domains) to study the influence of contact time and pH in the extraction percentiles. The studied systems present the following compositions: System I: Surfactant Saponified coconut oil, Cosurfactant 1-Butanol, Oil phase Kerosene, Aqueous phase 2% NaCl solution; System II: Aqueous phase Acid digestion solution with pH adjusted using KOH (pH 3.5); System VIII: Aqueous phase - Acid digestion solution (pH 0.06); and System IX Aqueous phase Distilled water (pH 10.24), the other phases of Systems II, VIII and IX are similar to System I. Method 2 showed to be the more efficient one regarding chromium extraction percentile (up to 96.59% - pH 3.5). Considering that with Method 2 the microemulsion region only appears in the Winsor II region, it was studied Method 3 (System X) for the evaluation and characterization of a triphasic system, seeking to compare with a biphases system. System X is composed by: Surfactant Saponified coconut oil, Cosurfactant 1-Butanol, Oil phase Kerosene, Aqueous phase Acid digestion solution diluted with water and with its pH adjusted using 0.01N NaOH solution. The biphasic and triphasic microemulsion systems were analyzed regarding its viscosity, extraction efficiency and drop effective diameter. The experimental results showed that for viscosity studies the obtained values were low for all studied systems, the diameter of the drop is smaller in the Winsor II region, with 15.5 nm, reaching 46.0 nm in Winsor III region, being this difference attributed to variations in system compositions and micelle geometry. In chromium extraction, these points showed similar results, being achieved 99.76% for Winsor II system and 99.62% for Winsor III system. Winsor III system showed to be more efficient due to the obtaining of a icroemulsion with smaller volume, with the possibility to recover the oil phase in excess, and the use of a smaller proportion of surfactant and cosurfactant (C/S)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work examined the possibility of using mussel Mytella falcata as bioindicator sample to detect metal ions in several estuaries potiguares, since species substances that accumulate in their tissues due to its characteristics filter feeders have been used for environmental monitoring. The chemometrics by principal components analysis was used to reduce the size of the original data in order to establish a pattern of distribution of metal ion. Samples were collected at three different points in the estuaries Curimataú, Guaraíra-Papeba, Potengi, Galinhos-Guamaré and Piranhas-Assu having been marked with the location using GPS (Global Positioning System). The determination of humidity content and digestion of the samples were performed using methods described in the Compendium of analytical standards of the Institute Adofo Lutz (2005) and the determination of metal ions of the elements Al, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Sn and Zn were performed by optical emission spectrometry with inductively coupled plasma as described by USEPA method 6010C. The results show that it is possible to use this molluscum Mytella falcata in the estuaries of Rio Grande do Norte for the determination of metal ions. The data were subjected to principal components analysis (PCA) which enabled us to verify the distribution pattern of the metal ions studied in several estuaries potiguares and group them according to the metal ions in common with and relate them to the activities in each region
Resumo:
The contamination by metal ions has been occurring for decades through the introduction of liquid effluent not treated, mainly from industrial activities, rivers and lakes, affecting water quality. For that the effluent can be disposed in water bodies, environmental standards require that they be adequately addressed, so that the concentration of metals does not exceed the limits of standard conditions of release in the receptor. Several methods for wastewater treatment have been reported in the literature, but many of them are high cost and low efficiency. The adsorption process has been used as effective for removal of metal ions. This paper presents studies to evaluate the potential of perlite as an adsorbent for removing metals in model solution. Perlite, in its natural form (NP) and expanded (EP), was characterized by X-ray fluorescence, X-ray diffraction, surface area analysis using nitrogen adsorption (BET method), scanning electron microscopy and Fourier transform infrared spectroscopy. The physical characteristic and chemical composition of the material presented were appropriate for the study of adsorption. Adsorption experiments by the method of finite bath for model solutions of metal ions Cr3+, Cu2+, Mn2+ and Ni2+ were carried out in order to study the effect of pH, mass of the adsorbent and the contact time on removal of ions in solution. The results showed that perlite has good adsorption capacity. The NP has higher adsorption capacity (mg g-1) than the EP. According to the values of the constant of Langmuir qm (mg g-1), the maximum capacity of the monolayer was obtained and in terms of proportion of mass, we found the following order experimental adsorption: Cr3+ (2.194 mg g- 1) > Ni2+ (0.585 mg g-1) > Mn2+ (0.515 mg g-1) > Cu2+ (0.513 mg g-1) and Cr3+ (1.934 mg g-1)> Ni2+ (0.514 mg g-1) > Cu2+ (0.421 mg g-1) > Mn2+ (0.364 mg g-1) on the NP and EP, respectively. The experimental data were best fitted the Langmuir model compared to Freundlich for Cu2+, Mn2+ and Ni2+. However, for the Cr3+, both models fit the experimental data
Resumo:
The present work has as main objective to contribute to the coordination chemistry of the ligand kojic acid, with the synthesis and characterization of the homoleptic compounds [Al(kj)3], [Fe(kj)3], [Fe(kj)2], [Cu(kj)2] e [Ru(kj)3], and the new heteroleptic complexes, trans- K2[Fe(kj)2(CN)2] and trans-Na2[Ru(kj)2(CN)2]. The obtained compounds were characterized by vibrational spectroscopy in the infrared region (IV) and Electronic spectroscopy in the ultraviolet and visible region (Uv-Vis). The infrared results indicated the coordination of the bidentate ligand kojic acid, due to reductions in the values of the stretching frequencies of the carbonyl and double bonds, compared to the free ligand for all complexes obtained. The presence of new vibrational modes indicated the change of symmetry of the molecules in the new compounds synthesized. Additionally, the presence of vibrational modes assigned to metal-oxygen also contributed to confirm the ligand coordinating to the metal ions. Through this technique, was also possible to perform correlations of the numbers of vibrational modes, in the region 1400-900 cm-1 and the compounds geometry. The heteroleptic compounds exhibited υC≡N in 2065 and 2053 cm-1, respectively, for the trans-K2[Fe(kj)2(CN)2] and trans-Na2[Ru(kj)2(CN)2], indicating coordination of the cyano ligand to metal ions FeII e RuII. Comparing the obtained values with literature data was possible to identify the complex isomerism as trans. In relation to the results of electronic spectroscopy, studies of pH variation of kojic acid provided information on the distribution of electron density in the molecule, showing characteristic spectral profile of kojic ion and its protonated form (Hkj, kojic acid), with two bands at 215 and 269 nm, or deprotonated (kj-), with bands at 226 and 315 nm. The electronic spectra obtained for all complexes in aqueous medium, in the ultraviolet region, exhibited variations of the energies assigned to kojic acid intraligand transitions while in the visible region, only transitions assigned to charge transfer of iron and ruthenium complex have been identified
Resumo:
The environmental impact due to the improper disposal of metal-bearing industrial effluents imposes the need of wastewater treatment, since heavy metals are nonbiodegradable and hazardous substances that may cause undesirable effects to humans and the environment. The use of microemulsion systems for the extraction of metal ions from wastewaters is effective when it occurs in a Winsor II (WII) domain, where a microemulsion phase is in equilibrium with an aqueous phase in excess. However, the microemulsion phase formed in this system has a higher amount of active matter when compared to a WIII system (microemulsion in equilibrium with aqueous and oil phases both in excess). This was the reason to develop a comparative study to evaluate the efficiency of two-phases and three-phases microemulsion systems (WII and WIII) in the extraction of Cu+2 and Ni+2 from aqueous solutions. The systems were composed by: saponified coconut oil (SCO) as surfactant, n-Butanol as cosurfactant, kerosene as oil phase, and synthetic solutions of CuSO4.5H2O and NiSO4.6H2O, with 2 wt.% NaCl, as aqueous phase. Pseudoternary phase diagrams were obtained and the systems were characterized by using surface tension measurements, particle size determination and scanning electron microscopy (SEM). The concentrations of metal ions before and after extraction were determined by atomic absorption spectrometry. The extraction study of Cu+2 and Ni+2 in the WIII domain contributed to a better understanding of microemulsion extraction, elucidating the various behaviors presented in the literature for these systems. Furthermore, since WIII systems presented high extraction efficiencies, similar to the ones presented by Winsor II systems, they represented an economic and technological advantage in heavy metal extraction due to a small amount of surfactant and cosurfactant used in the process and also due to the formation of a reduced volume of aqueous phase, with high concentration of metal. Considering the reextraction process, it was observed that WIII system is more effective because it is performed in the oil phase, unlike reextraction in WII, which is performed in the aqueous phase. The presence of the metalsurfactant complex in the oil phase makes possible to regenerate only the surfactant present in the organic phase, and not all the surfactant in the process, as in WII system. This fact allows the reuse of the microemulsion phase in a new extraction process, reducing the costs with surfactant regeneration