987 resultados para bands


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ajoite (K,Na)Cu7AlSi9O24(OH)6•3H2O is a mineral named after the Ajo district of Arizona. Raman and infrared spectroscopy were used to characterise the molecular structure of ajoite. The structure of the mineral shows disorder which is reflected in the difficulty of obtaining quality Raman spectra. The Raman spectrum is characterised by a broad spectral profile with a band at 1048 cm-1 assigned to the ν1 (A1g) symmetric stretching vibration. Strong bands at 962, 1015 and 1139 cm-1 are assigned to the ν3 SiO4 antisymmetric stretching vibrations. Multiple ν4 SiO4 vibrational modes indicate strong distortion of the SiO4 tetrahedra. Multiple AlO and CuO stretching bands are observed. Raman spectroscopy and confirmed by infrared spectroscopy clearly shows that hydroxyl units are involved in the ajoite structure. Based upon the infrared spectra, water is involved in the ajoite structure, probably as zeolitic water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular structure of the sodium borate mineral ameghinite NaB3O3(OH)4 has been determined by the use of vibrational spectroscopy. The crystal structure consists of isolated [B3O3(OH)4]- units formed by one tetrahedron and two triangles. H bonds and Na atoms link these polyanions to form a 3-dimensional framework. The Raman spectrum is dominated by an intense band at 1027 cm-1, attributed to BO stretching vibrations of both the trigonal and tetrahedral boron. A series of Raman bands at 1213, 1245 and 1281cm-1 are ascribed to BOH in-plane bending modes. The infrared spectra are characterized by strong overlap of broad multiple bands. An intense Raman band found at 620 cm-1 is attributed to the bending modes of trigonal and tetrahedral boron. Multiple Raman bands in the OH stretching region are observed at 3206, 3249 and 3385 cm-1. Raman spectroscopy coupled with infrared spectroscopy has enabled aspects about the molecular structure of the borate mineral ameghinite to be assessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last decade, Ionic Liquids (ILs) have been used for the dissolution and derivatization of isolated cellulose. This ability of ILs is now sought for their application in the selective dissolution of cellulose from lignocellulosic biomass, for the manufacture of cellulosic ethanol. However, there are significant knowledge gaps in the understanding of the chemistry of the interaction of biomass and ILs. While imidazolium ILs have been used successfully to dissolve both isolated crystalline cellulose and components of lignocellulosic biomass, phosphonium ILs have not been sufficiently explored for the use in dissolution of lignocellulosic biomass. This thesis reports on the study of the chemistry of sugarcane bagasse with phosphonium ILs. Qualitative and quantitative measurements of biomass components dissolved in the phosphonium ionic liquids (ILs), trihexyltetradecylphosphonium chloride ([P66614]Cl) and tributylmethylphosphonium methylsulphate ([P4441]MeSO4) are obtained using attenuated total reflectance-Fourier Transform Infra Red (FTIR). Absorption bands related to cellulose, hemicelluloses and lignin dissolution monitored in situ in biomass-IL mixtures indicate lignin dissolution in both ILs and some holocellulose dissolution in the hydrophilic [P4441]MeSO4. The kinetics of lignin dissolution reported here indicate that while dissolution in the hydrophobic IL [P66614]Cl appears to follow an accepted mechanism of acid catalysed β-aryl ether cleavage, dissolution in the hydrophilic IL [P4441]MeSO4 does not appear to follow this mechanism and may not be followed by condensation reactions (initiated by reactive ketones). The quantitative measurement of lignin dissolution in phosphonium ILs based on absorbance at 1510 cm-1 has demonstrated utility and greater precision than the conventional Klason lignin method. The cleavage of lignin β-aryl ether bonds in sugarcane bagasse by the ionic liquid [P66614]Cl, in the presence of catalytic amounts of mineral acid. (ca. 0.4 %). The delignification process of bagasse is studied over a range of temperatures (120 °C to 150 °C) by monitoring the production of β-ketones (indicative of cleavage of β-aryl ethers) using FTIR spectroscopy and by compositional analysis of the undissolved fractions. Maximum delignification is obtained at 150 °C, with 52 % of lignin removed from the original lignin content of bagasse. No delignification is observed in the absence of acid which suggests that the reaction is acid catalysed with the IL solubilising the lignin fragments. The rate of delignification was significantly higher at 150 °C, suggesting that crossing the glass transition temperature of lignin effects greater freedom of rotation about the propanoid carbon-carbon bonds and leads to increased cleavage of β-aryl ethers. An attempt has been made to propose a probable mechanism of delignifcation of bagasse with the phosphonuim IL. All polymeric components of bagasse, a lignocellulosic biomass, dissolve in the hydrophilic ionic liquid (IL) tributylmethylphosphonium methylsulfate ([P4441]MeSO4) with and without a catalytic amount of acid (H2SO4, ca. 0.4 %). The presence of acid significantly increases the extent of dissolution of bagasse in [P4441]MeSO4 (by ca. 2.5 times under conditions used here). The dissolved fractions can be partially recovered by the addition of an antisolvent (water) and are significantly enriched in lignin. Unlike acid catalysed dissolution in the hydrophobic IL tetradecyltrihexylphosphonium chloride there is little evidence of cleavage of β-aryl ether bonds of lignin dissolving in [P4441]MeSO4 (with and without acid), but this mechanism may play some role in the acid catalysed dissolution. The XRD of the undissolved fractions suggests that the IL may selectively dissolve the amorphous cellulose component, leaving behind crystalline material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Qualitative and quantitative measurements of biomass components dissolved in the phosphonium ionic liquids (ILs), trihexyltetradecylphosphonium chloride ([P66614]Cl) and tributylmethylphosphonium methylsulphate ([P4441]MeSO 4), are obtained using attenuated total reflectance-FTIR. Absorption bands related to cellulose, hemicelluloses, and lignin dissolution monitored in situ in biomass-IL mixtures indicate lignin dissolution in both ILs and some holocellulose dissolution in the hydrophilic [P4441]MeSO 4. The kinetics of lignin dissolution reported here indicate that while dissolution in the hydrophobic IL [P66614]Cl appears to follow an accepted mechanism of acid catalyzed -aryl ether cleavage, dissolution in the hydrophilic IL [P4441]MeSO 4 does not appear to follow this mechanism and may not be followed by condensation reactions (initiated by reactive ketones). The measurement of lignin dissolution in phosphonium ILs based on absorbance at 1510 cm 1 has demonstrated utility. When coupled with the gravimetric Klason lignin method, ATR-FTIR study of reaction mixtures can lead to a better understanding of the delignification process. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vibrational spectroscopy has been used to characterise the mineral creaseyite Cu2Pb2(Fe,Al)2(Si5O17)·6H2O. The mineral is found in the oxidised zone of base metal deposits and interestingly is associated with copper silicate minerals including ajoite, kinoite, chrysocolla as well as wulfenite, willemite, mimetite and wickenburgite. Creaseyite is a mineral with zeolitic properties. A Raman band at 998 cm−1 is assigned to the SiO stretching vibration of SiO3 units. The Raman band at 1071 cm−1 is assigned to the SiO stretching vibrations of the Si2O5 units. Raman bands are found at 2750, 2902, 3162, 3470 and 3525 cm−1. The band at 3525 cm−1 is attributed to zeolitic water. Other bands are assigned to water coordinated to the metal cations. Vibrational spectroscopy enables aspects of the molecular structure of creaseyite to be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bright blue minerals cavansite and pentagonite, a calcium vanadium silicate Ca(V4+O)Si4O10.4H2O, have been studied by UV–Visible, Raman and infrared spectroscopy. Cavansite shows an open porous structure with very small micron sized holes. Strong UV–Visible absorption bands are observed at around 403, 614 and 789 nm for cavansite and pentagonite. The Raman spectrum of cavansite is dominated by an intense band at 981 cm -1 and pentagonite by a band at 971 cm-1 attributed to the stretching vibrations of (SiO3)n units. Cavansite is characterised by two intense bands at 574 and 672 cm-1 whereas pentagonite by a single band at 651 cm-1. The Raman spectrum of cavansite in the hydroxyl stretching region shows bands at 3504, 3546, 3577, 3604 and 3654 cm-1 whereas pentagonite is a single band at 3532 cm_1. These bands are attributed to water coordinated to calcium and vanadium. XPS studies show that bond energy of oxygen in oxides is 530 eV, and in hydroxides -531.5 eV and for water -533.5 eV. XPS studies show a strong peak at 531.5 eV for cavansite, indicating some OH units in the structure of cavansite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral svanbergite SrAl 3(PO 4,SO 4) 2(OH) 6 is a hydroxy phosphate-sulphate mineral belonging to the beudantite subgroup of alunites and has been characterised by vibrational spectroscopy. Bands at various wavenumbers were assigned to the different vibrational modes of svanbergite, which were then associated with the structure of the mineral. Bands were primarily assigned to phosphate and sulphate stretching and bending modes. Two symmetric stretching modes for both phosphate and sulphate supported the concept of non-equivalent phosphate and sulphate units in the mineral structure. Bands in the OH stretching region enabled hydrogen bond distances to be calculated. Comparison of the hydrogen bond distances and the calculated hydrogen bond distances from the structure models indicates that hydrogen bonding in svanbergite occurs between the two OH units rather than OH to SO42- units.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral xonotlite Ca 6Si 6O 17(OH) 2 is a crystalline calcium silicate hydrate which is widely used in plaster boards and in many industrial applications. The structure of xonotlite is best described as having a dreierdoppelketten silicate structure, and describes the repeating silicate trimer which forms the silicate chains, and doppel indicating that two chains combine. Raman bands at 1042 and 1070 cm -1 are assigned to the SiO stretching vibrations of linked units of Si 4O 11 units. Raman bands at 961 and 980 cm -1 serve to identify Si 3O 10 units. The broad Raman band at 862 cm -1 is attributed to hydroxyl deformation modes. Intense Raman bands at 593 and 695 cm -1 are assigned to OSiO bending vibrations. Intense Raman bands at 3578, 3611, 3627 and 3665 cm -1 are assigned to OH stretching vibrations of the OH units in xonotlite. Infrared spectra are in harmony with the Raman spectra. Raman spectroscopy with complimentary infrared spectroscopy enables the characterisation of the building material xonotlite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman spectroscopy complimented with infrared spectroscopy has been used to study the variation in molecular structure of two minerals of the apophyllite mineral group, namely apophyllite-(KF)KCa4Si8O20F.8H2O and apophyllite-(KOH) KCa4Si8O20(F,OH).8H2O. apophyllite-(KF) and apophyllite-(KOH) are different minerals only because of the difference in the percentage of fluorine to hydroxyl ions. The Raman spectra are dominated by a very intense sharp peak at 1059 cm -1. A band at around 846 cm -1 is assigned to the water librational mode. It is proposed that the difference between apophyllite-(KF) and apophyllite-(KOH) is the observation of two Raman bands in the OH stretching region at around 3563 and 3625 cm -1. Multiple water stretching and bending modes are observed showing that there is much variation in hydrogen bonding between water and the silicate surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural health monitoring (SHM) refers to the procedure used to assess the condition of structures so that their performance can be monitored and any damage can be detected early. Early detection of damage and appropriate retrofitting will aid in preventing failure of the structure and save money spent on maintenance or replacement and ensure the structure operates safely and efficiently during its whole intended life. Though visual inspection and other techniques such as vibration based ones are available for SHM of structures such as bridges, the use of acoustic emission (AE) technique is an attractive option and is increasing in use. AE waves are high frequency stress waves generated by rapid release of energy from localised sources within a material, such as crack initiation and growth. AE technique involves recording these waves by means of sensors attached on the surface and then analysing the signals to extract information about the nature of the source. High sensitivity to crack growth, ability to locate source, passive nature (no need to supply energy from outside, but energy from damage source itself is utilised) and possibility to perform real time monitoring (detecting crack as it occurs or grows) are some of the attractive features of AE technique. In spite of these advantages, challenges still exist in using AE technique for monitoring applications, especially in the area of analysis of recorded AE data, as large volumes of data are usually generated during monitoring. The need for effective data analysis can be linked with three main aims of monitoring: (a) accurately locating the source of damage; (b) identifying and discriminating signals from different sources of acoustic emission and (c) quantifying the level of damage of AE source for severity assessment. In AE technique, the location of the emission source is usually calculated using the times of arrival and velocities of the AE signals recorded by a number of sensors. But complications arise as AE waves can travel in a structure in a number of different modes that have different velocities and frequencies. Hence, to accurately locate a source it is necessary to identify the modes recorded by the sensors. This study has proposed and tested the use of time-frequency analysis tools such as short time Fourier transform to identify the modes and the use of the velocities of these modes to achieve very accurate results. Further, this study has explored the possibility of reducing the number of sensors needed for data capture by using the velocities of modes captured by a single sensor for source localization. A major problem in practical use of AE technique is the presence of sources of AE other than crack related, such as rubbing and impacts between different components of a structure. These spurious AE signals often mask the signals from the crack activity; hence discrimination of signals to identify the sources is very important. This work developed a model that uses different signal processing tools such as cross-correlation, magnitude squared coherence and energy distribution in different frequency bands as well as modal analysis (comparing amplitudes of identified modes) for accurately differentiating signals from different simulated AE sources. Quantification tools to assess the severity of the damage sources are highly desirable in practical applications. Though different damage quantification methods have been proposed in AE technique, not all have achieved universal approval or have been approved as suitable for all situations. The b-value analysis, which involves the study of distribution of amplitudes of AE signals, and its modified form (known as improved b-value analysis), was investigated for suitability for damage quantification purposes in ductile materials such as steel. This was found to give encouraging results for analysis of data from laboratory, thereby extending the possibility of its use for real life structures. By addressing these primary issues, it is believed that this thesis has helped improve the effectiveness of AE technique for structural health monitoring of civil infrastructures such as bridges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A bifunctionalized TiO2 film containing a dye-sensitized zone and a catalysis zone is designed for visible-light photocatalytic reduction of CO2 to chemicals continuously. Charge separation can be accomplished with electron transferring to catalysis zone and positive charge transforming to anode. Highly efficient conversion of CO2 to formic acid, formaldehyde, and methanol is achieved through the transferring electrons on conduction bands (CB) of TiO2. Reduction of CO2 and O2 evolution take place in separated solutions on different catalysts. The separated solution carried out in this photo-reactor system can avoid CO2 reduction products being oxidized by anode. The yields of reduction products were enhanced remarkably by external electrical power. This study provides not only a new photocatalytic system but also a potential of renewable energy source via carbon dioxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteoglycans (PGs) are crucial extracellular matrix (ECM) components that are present in all tissues and organs. Pathological remodeling of these macromolecules can lead to severe diseases such as osteoarthritis or rheumatoid arthritis. To date, PG-associated ECM alterations are routinely diagnosed by invasive analytical methods. Here, we employed Raman microspectroscopy, a laser-based, marker-free and non-destructive technique that allows the generation of spectra with peaks originating from molecular vibrations within a sample, to identify specific Raman bands that can be assigned to PGs within human and porcine cartilage samples and chondrocytes. Based on the non-invasively acquired Raman spectra, we further revealed that a prolonged in vitro culture leads to phenotypic alterations of chondrocytes, resulting in a decreased PG synthesis rate and loss of lipid contents. Our results are the first to demonstrate the applicability of Raman microspectroscopy as an analytical and potential diagnostic tool for non-invasive cell and tissue state monitoring of cartilage in biomedical research. ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peggy Shaw has always had a host of crooners, lounge singers, movie stars, rock and roll bands, and eccentric family members living inside her. Ruff is a tribute to those who have kept Shaw company over the last 68 years, a lament for the absence of those who disappeared into the dark holes left behind by her recent stroke, and a celebration that her brain is able to fill the blank green screens with new insight. The original set and media environment for RUFF was conceived during a Split Britches residency hosted at QUT from June-August 2012, funded by Arts Queensland. After a preliminary season at Out North in Alaska RUFF premiered at Performance Space 122 2013 COIL festival, PS122 @ Dixon Place, New York in January 2013 and has since toured to the Chelsea Theatre in London and the Arches Festival in Glasgow. Co Written and Performed by Peggy Shaw, Co Written and Directed by Lois Weaver, Original Music Composed by Vivian Stoll, Choreography by Stormy Brandenburger, Set and Media Design by Matt Delbridge, Lighting Design by Lori E Said.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some minerals are colloidal and show no X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of mineral. Among this group of minerals is kemmlitzite (Sr,Ce)Al3(AsO4)(SO4)(OH)6. The objective of this research is to determine the molecular structure of the mineral kemmlitzite using vibrational spectroscopy. Raman microscopy offers a useful method for the analysis of such colloidal minerals. Raman and infrared bands are attributed to the AsO43- , SO42- and water stretching vibrations. The Raman spectrum is dominated by a very intense sharp band at 984 cm-1 assigned to the SO42- symmetric stretching mode. Raman bands at 690, 772 and 825 cm-1 may be assigned to the AsO43- antisymmetric and symmetric stretching modes. Raman bands observed at 432 and 465 cm-1 are attributable to the doubly degenerate 2 (SO4)2- bending mode. Vibrational spectroscopy is important in the assessment of the molecular structure of the kemmlitzite, especially when the mineral is non-diffracting or poorly diffracting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal decomposition and dehydroxylation process of coal-bearing strata kaolinite–potassium acetate intercalation complex (CSKK) has been studied using X-ray diffraction (XRD), infrared spectroscopy (IR), thermal analysis, mass spectrometric analysis and infrared emission spectroscopy. The XRD results showed that the potassium acetate (KAc) have been successfully intercalated into coal-bearing strata kaolinite with an obvious basal distance increase of the first basal peak, and the positive correlation was found between the concentration of intercalation regent KAc and the degree of intercalation. As the temperature of the system is raised, the formation of KHCO3, KCO3 and KAlSiO4, which is derived from the thermal decomposition or phase transition of CSKK, is observed in sequence. The IR results showed that new bands appeared, the position and intensities shift can also be found when the concentration of intercalation agent is raised. The thermal analysis and mass spectrometric analysis results revealed that CSKK is stable below 300 °C, and the thermal decomposition products (H2O and CO2) were further proved by the mass spectrometric analysis. A comparison of thermal analysis results of original coal-bearing strata kaolinite and its intercalation complex gives new discovery that not only a new mass loss peak is observed at 285 °C, but also the temperature of dehydroxylation and dehydration of coal bearing strata kaolinite is decreased about 100 °C. This is explained on the basis of the interlayer space of the kaolinite increased obviously after being intercalated by KAc, which led to the interlayer hydrogen bonds weakened, enables the dehydroxylation from kaolinite surface more easily. Furthermore, the possible structural model for CSKK has been proposed, with further analysis required in order to prove the most possible structures.