957 resultados para bacterial pathogenesis
Resumo:
PURPOSE OF REVIEW: The prevalence of nonalcoholic fatty liver disease is increasing worldwide and there is strong evidence that dietary factors play a role in its pathogenesis. The present review aims to provide a better understanding of how carbohydrates and other macronutrients may affect the disease. RECENT FINDINGS: The effects of carbohydrates on the development of nonalcoholic fatty liver disease differ depending upon the carbohydrate type; high-glycemic index foods are related to increased hepatic fat in both rodents and humans. Similarly, simple carbohydrates, such as fructose, stimulate hepatic de-novo lipogenesis and decrease lipid oxidation, thus leading to increased fat deposition. The underlying mechanisms may involve the activation of transcription factors. Fat intake broadly leads to hepatic fat deposition in rodents but few data are available on humans. Both carbohydrates and fat trigger inflammatory factors, which are closely related to metabolic disorders and nonalcoholic fatty liver disease. Lifestyle interventions appear to be the most appropriate first-line treatment for nonalcoholic fatty liver disease. SUMMARY: There is strong evidence that the diet may affect the development of nonalcoholic fatty liver disease. Although simple carbohydrates are clearly shown to have deleterious effects in humans, the role of fat remains controversial. Further studies will be required to evaluate the effects of macronutrient composition on the development of nonalcoholic fatty liver disease.
Resumo:
AIMS: To investigate if vaginal application of dequalinium chloride (DQC, Fluomizin®) is as effective as vaginal clindamycin (CLM) in the treatment of bacterial vaginosis (BV). METHODS: This was a multinational, multicenter, single-blind, randomized trial in 15 centers, including 321 women. They were randomized to either vaginal DQC tablets or vaginal CLM cream. Follow-up visits were 1 week and 1 month after treatment. Clinical cure based on Amsel's criteria was the primary outcome. Secondary outcomes were rate of treatment failures and recurrences, incidence of post-treatment vulvovaginal candidosis (VVC), lactobacillary grade (LBG), total symptom score (TSC), and safety. RESULTS: Cure rates with DQC (C1: 81.5%, C2: 79.5%) were as high as with CLM (C1: 78.4%, C2: 77.6%). Thus, the treatment with DQC had equal efficacy as CLM cream. A trend to less common post-treatment VVC in the DQC-treated women was observed (DQC: 2.5%, CLM: 7.7%; p = 0.06). Both treatments were well tolerated with no serious adverse events occurring. CONCLUSION: Vaginal DQC has been shown to be equally effective as CLM cream, to be well tolerated with no systemic safety concerns, and is therefore a valid alternative therapy for women with BV [ClinicalTrials.gov, Med380104, NCT01125410].
Resumo:
Oxalate catabolism, which can have both medical and environmental implications, is performed by phylogenetically diverse bacteria. The formyl-CoA-transferase gene was chosen as a molecular marker of the oxalotrophic function. Degenerated primers were deduced from an alignment of frc gene sequences available in databases. The specificity of primers was tested on a variety of frc-containing and frc-lacking bacteria. The frc-primers were then used to develop PCR-DGGE and real-time SybrGreen PCR assays in soils containing various amounts of oxalate. Some PCR products from pure cultures and from soil samples were cloned and sequenced. Data were used to generate a phylogenetic tree showing that environmental PCR products belonged to the target physiological group. The extent of diversity visualised on DGGE pattern was higher for soil samples containing carbonate resulting from oxalate catabolism. Moreover, the amount of frc gene copies in the investigated soils was detected in the range of 1.64x10(7) to 1.75x10(8)/g of dry soil under oxalogenic tree (representing 0.5 to 1.2% of total 16S rRNA gene copies), whereas the number of frc gene copies in the reference soil was 6.4x10(6) (or 0.2% of 16S rRNA gene copies). This indicates that oxalotrophic bacteria are numerous and widespread in soils and that a relationship exists between the presence of the oxalogenic trees Milicia excelsa and Afzelia africana and the relative abundance of oxalotrophic guilds in the total bacterial communities. This is obviously related to the accomplishment of the oxalate-carbonate pathway, which explains the alkalinization and calcium carbonate accumulation occurring below these trees in an otherwise acidic soil. The molecular tools developed in this study will allow in-depth understanding of the functional implication of these bacteria on carbonate accumulation as a way of atmospheric CO(2) sequestration.
Resumo:
The bacterial insertion sequence IS21 shares with many insertion sequences a two-step, reactive junction transposition pathway, for which a model is presented in this review: a reactive junction with abutted inverted repeats is first formed and subsequently integrated into the target DNA. The reactive junction occurs in IS21-IS21 tandems and IS21 minicircles. In addition, IS21 shows a unique specialization of transposition functions. By alternative translation initiation, the transposase gene codes for two products: the transposase, capable of promoting both steps of the reactive junction pathway, and the cointegrase, which only promotes the integration of reactive junctions but with higher efficiency. This review also includes a survey of the IS21 family and speculates on the possibility that other members present a similar transpositional specialization.
Resumo:
The calcium-binding protein calretinin has emerged as a useful marker for the identification of mesotheliomas of the epithelioid and mixed types, but its putative role in tumor development has not been addressed previously. Although exposure to asbestos fibers is considered the main cause of mesothelioma, undoubtedly, not all mesothelioma patients have a history of asbestos exposure. The question as to whether the SV40 virus is involved as a possible co-factor is still highly debated. Here we show that increased expression of SV40 early gene products in the mesothelial cell line MeT-5A induces the expression of calretinin and that elevated calretinin levels strongly correlate with increased resistance to asbestos cytotoxicity. Calretinin alone mediates a significant part of this protective effect because cells stably transfected with calretinin cDNA were clearly more resistant to the toxic effects of crocidolite than mock-transfected control cells. Down-regulation of calretinin by antisense methods restored the sensitivity to asbestos toxicity to a large degree. The protective effect observed in clones with higher calretinin expression levels could be eliminated by phosphatidylinositol 3-kinase (PI3K) inhibitors, implying an important role for the PI3K/AKT signaling (survival) pathway in mediating the protective effect. Up-regulation of calretinin, resulting from either asbestos exposure or SV40 oncoproteins, may be a common denominator that leads to increased resistance to asbestos cytotoxicity and thereby contributes to mesothelioma carcinogenesis.
Resumo:
Severe sepsis and septic shock are lethal complications of infection, characterised by dysregulated inflammatory and immune responses. Our understanding of the pathogenesis of sepsis has improved markedly in recent years, but unfortunately has not been translated into efficient treatment strategies. Epigenetic mechanisms such as covalent modification of histones by acetylation are master regulators of gene expression under physiological and pathological conditions, and strongly impact on inflammatory and host defence responses. Histone acetylation is controlled by histone acetyltransferases and histone deacetylases (HDACs), which affect gene expression also by targeting non-histone transcriptional regulators. Numerous HDAC inhibitors (HDACi) are being tested in clinical trials, primarily for the treatment of cancer. We performed the first comprehensive study of the impact of HDACi on innate immune responses in vitro and in vivo. We showed that HDACi act essentially as negative regulators of the expression of critical immune receptors and antimicrobial pathways in innate immune cells. In agreement, HDACi impaired phagocytosis and killing of bacteria by macrophages, and increased susceptibility to non-severe bacterial and fungal infections. Strikingly, proof-of-principle studies demonstrated that HDACi protect from lethal toxic shock and septic shock. Overall, our observations argue for a close monitoring of the immunological and infection status of patients treated with HDACi, especially immunocompromised cancer patients. They also support the concept of pharmacological inhibitors of HDACs as promising drugs to treat inflammatory diseases, including sepsis.
Resumo:
Background: Negative pressure wound treatment is increasingly used through a Vacuum-Assisted Closure (VAC) device in complex wound situations. For this purpose, sterile polyurethane (PU) and polyvinyl alcohol (PVA) foam dressings are fitted to the wound size and covered with an adhesive drape to create an airtight seal. Little information exists about the type and quantity of microorganisms within the foams. Therefore, we investigated VAC foams after removal from the wound using a validated method (sonication) to detect the bacterial bioburden in the foam consisting as microbial biofilms.Methods: We prospectively included VAC foams (PU and PVA, KCI, Rümlamg, Switzerland) without antibacterial additions (e.g. silver), which were removed from wounds in patients with chronic ulcers from January 2007 through December 2008. Excluded were patients with acute wound infection, necrotizing fasciitis, underlying osteomyelitis or implant. Removed foams from regular changes of dressing were aseptically placed in a container with 100 ml sterile Ringer's solution. Within 4 hours after removal, foams were sonicated for 5 min at 40 kHz (as described in NEJM 2007;357:654). The resulting sonication fluid was cultured at 37°C on aerobic blood agar plates for 5 days. Microbes were quantified as No. of colony-forming units (CFU)/ml sonication fluid and identified to the species level.Results: A total of 68 foams (38 PU and 30 PVA) from 55 patients were included in the study (median age 71 years; range 33-88 years, 57% were man). Foams were removed from the following anatomic sites: sacrum (n=29), ischium (n=18), heel (n=13), calves (n=6) and ankle (n=2). The median duration of being in place was 3 days (range, 1-8 days). In all 68 foams, bacteria were found in large quantities (median 105 CFU/ml, range 102-7 CFU/ml sonication fluid. No differences were found between PU and PVA foams. One type of organisms was found in 11 (16%), two in 17 (24%) and 3 or more in 40 (60%) foams. Gram-negative rods (Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa) were isolated in 70%, followed by Staphylococcus aureus (20%), koagulase-negative staphylococci, streptococci (8%), and enterococci (2%).Conclusion: With sonication, a high density of bacteria present in VAC foams was demonstrated after a median of 3 days. Future studies are needed to investigate whether antimicrobial-impregnated foams can reduce the bacterial load in foams and potentially improve wound healing.
Resumo:
Psoriasis is one of the most common chronic, inflammatory, T-cell-mediated autoimmune diseases. Over the past decade, increased knowledge of disease pathogenesis has fundamentally changed psoriasis treatment, with the introduction of biologics, and this has led to a multitude of improved selective targets providing potential therapeutic options. Indeed, numerous pathogenesis-based treatments are currently in development, as psoriasis has also become increasingly relevant for proof-of-concept studies. The purpose of this review was to summarize current knowledge of psoriasis immunopathogenesis, focusing on the T-cell-mediated immune response and its initiation. The authors describe recent advances in psoriasis treatment and discuss pathogenesis-based therapies that are currently in development or which could be envisioned for the future. Although current biologics are well tolerated, several issues such as long-term efficacy, long-term safety, and high costs keep driving the search for new and better therapies. With further advances in understanding disease pathogenesis, more genomic data from psoriasis patients becoming available, and potentially the identification of autoantigens in psoriasis, current research should lead to the development of a growing arsenal of improved targeted treatments and to further breakthrough immunotherapies.
Resumo:
The Iowa Department of Natural Resources has produced an 4 page article about how to assess Iowa's streams and rivers. How to use ambient monitoring of streams and river in Iowa.
Resumo:
Adherence to fibrinogen and fibronectin plays a crucial role in Staphylococcus aureus experimental endocarditis. Previous genetic studies have shown that infection and carriage isolates do not systematically differ in their virulence-related genes, including genes conferring adherence, such as clfA and fnbA. We set out to determine the range of adherence phenotypes in carriage isolates of S. aureus, to compare the adherence of these isolates to the adherence of infection isolates, and to determine the relationship between adherence and infectivity in a rat model of experimental endocarditis. A total of 133 healthy carriage isolates were screened for in vitro adherence to fibrinogen and fibronectin, and 30 isolates were randomly chosen for further investigation. These 30 isolates were compared to 30 infective endocarditis isolates and 30 blood culture isolates. The infectivities of the carriage isolates, which displayed either extremely low or high adherence to fibrinogen and fibronectin, were tested using a rat model of experimental endocarditis. The levels of adherence to both fibrinogen and fibronectin were very similar for isolates from healthy carriers and members of the two groups of infection isolates. All three groups of isolates showed a wide range of adherence to fibrinogen and fibronectin. Moreover, the carriage isolates that showed minimal adherence and the carriage isolates that showed strong adherence had the same infectivity in experimental endocarditis. Adherence was proven to be important for pathogenesis in experimental endocarditis, but even the least adherent carriage strains had the ability to induce infection. We discuss the roles of differential gene expression, human host factors, and gene redundancy in resolving this apparent paradox.
Resumo:
Although hemoglobin (Hb) is mainly present in the cytoplasm of erythrocytes (red blood cells), lower concentrations of pure, cell-free Hb are released permanently into the circulation due to an inherent intravascular hemolytic disruption of erythrocytes. Previously it was shown that the interaction of Hb with bacterial endotoxins (lipopolysaccharides, LPS) results in a significant increase of the biological activity of LPS. There is clear evidence that the enhancement of the biological activity of LPS by Hb is connected with a disaggregation of LPS. From these findings one questions whether the property to enhance the biological activity of endotoxin, in most cases proven by the ability to increase the cytokine (tumor-necrosis-factor-alpha, interleukins) production in human mononuclear cells, is restricted to bacterial endotoxin or is a more general principle in nature. To elucidate this question, we investigated the interaction of various synthetic and natural virulence (pathogenicity) factors with hemoglobin of human or sheep origin. In addition to enterobacterial R-type LPS a synthetic bacterial lipopeptide and synthetic phospholipid-like structures mimicking the lipid A portion of LPS were analysed. Furthermore, we also tested endotoxically inactive LPS and lipid A compounds such as those from Chlamydia trachomatis. We found that the observations made for endotoxically active form of LPS can be generalized for the other synthetic and natural virulence factors: In every case, the cytokine-production induced by them is increased by the addition of Hb. This biological property of Hb is connected with its physical property to convert the aggregate structures of the virulence factors into one with cubic symmetry, accompanied with a considerable reduction of the size and number of the original aggregates.
Resumo:
Les inhibiteurs de la protéase du VIH (IP) constituent une des classes de traitements antirétroviraux parmi les plus utilisés au cours de l'infection par le VIH. Leur utilisation est associée à divers effets secondaires, notamment la dyslipidémie, la résistance à l'insuline, la lipodystrophie et certaines complications cardio-vasculaires. Ces molécules ont également des propriétés anti-tumorales, décrites chez des patients non infectés par le VIH. Pourtant, les mécanismes moléculaires à l'origine de ces effets annexes restent méconnus. Dans ce travail, nous démontrons que les IP, comme le Nelfinavir, le Ritonavir, le Lopinavir, le Saquinavir et l'Atazanavir, entrainent la production d'interleukine-lß (IL-lß), une puissante cytokine pro-inflammatoire, connue pour son rôle central dans les maladies inflammatoires. La sécrétion d'IL-lß requiert la formation de l'inflammasome, un complexe protéique intracellulaire servant de plateforme d'activation de la caspase-1 et, par la suite, à la maturation protéolytique de certaines cytokines, dont l'IL-lß. Dans les macrophages murins en culture primaire, ainsi que dans une lignée de monocytes humains, nous démontrons que les IP augmentent la maturation et la sécrétion de l'IL-lß via l'induction d'un inflammasome dépendant de ASC. De plus, nous établissons que les IP induisent spécifiquement l'activation de AIM2, un inflammasome détectant la présence intracytosolique d'ADN viral ou bactérien. Nos résultats démontrent l'existence d'une nouvelle voie d'activation de l'inflammasome AIM2 par un signal endogène dont la nature reste à définir. Ces données suggèrent que AIM2 pourrait jouer un rôle important dans la promotion de l'activité anti-tumorale ainsi que dans les autres effets annexes observés chez les patients traités par IP. -- HIV protease inhibitors (Pis) are among the most often used classes of antiretroviral drugs for HIV infection. Treatment of patients with HIV-PIs is associated with the development of metabolic side effects including dyslipidemia, insulin resistance, lipodystrophy and cardiovascular complications. In addition, these drugs have been reported to have anti¬tumoral properties in non-infected patients, however the molecular mechanisms causing these off-target effects are still unclear. Here we show that the HIV-PIs, such as Nelfinavir, Ritonavir, Lopinavir, Saquinavir and Atazanavir, activate the production of interleukin-lß (IL-lß), a potent pro-inflammatory cytokine that plays a central role in the pathogenesis of inflammatory diseases. The release of IL-lß depends on the activation of the inflammasome, a multiprotein complex that serves as a platform for caspase-1 activation and subsequent proteolytic maturation of cytokines including IL-lß. We found that in mouse primary macrophages as well as in a human monocytic cell line, the HIV-PIs augment the maturation and secretion of IL-lß by triggering an ASC-dependent inflammasome activation. Moreover, we show that the HIV-PIs specifically engage AIM2, a recently characterized inflammasome -forming protein that was described to detect the cytosolic release of bacterial and viral DNA. Our findings demonstrate a new pathway of activation of the AIM2 inflammasome by a yet to be defined endogenous signal and may suggest a possible role for AIM2 in promoting anti¬tumoral activity and off-target effects observed in HIV-PIs treated patients.
Resumo:
Staphylococcus aureus is a highly successful pathogen responsible of a wide variety of diseases, from minor skin infection to life-threatening sepsis or infective endocarditis, as well as food poisoning and toxic shock syndrome. This heterogeneity of infections and the ability of S. aureus to develop antibiotic-resistance to virtually any available drugs reflect its extraordinary capacity to adapt and survive in a great variety of environments. The pathogenesis of S. aureus infection involves a wide range of cell wall-associated adhesins and extracellular toxins that promote host colonization and invasion. In addition, S. aureus is extremely well equipped with regulatory systems that sense environmental conditions and respond by fine tuning the expression of metabolic and virulence determinants. Surface adhesins referred to MSCRAMMs - for Microbial Surface Component Recognizing Adherence Matrix Molecules - mediate binding to the host extracellular matrix or serum components, including fibrinogen, fibronectin, collagen and elastin, and promote tissue colonization and invasion. Major MSCRAMMs include a family of surface-attached proteins covalently bound to the cell wall peptidoglycan via a conserved LPXTG motif. Genomic analyses indicate that S. aureus contain up to 22 LPXTG surface proteins, which could potentially act individually or in synergy to promote infection. In the first part of this study we determined the range of adherence phenotypes to fibrinogen and fibronectin among 30 carriage isolates of S. aureus and compared it to the adherence phenotypes of 30 infective endocarditis and 30 blood culture isolates. Overall there were great variations in in vitro adherence, but no differences were observed between carriage and infection strains. We further determined the relation between in vitro adherence and in vivo infectivity in a rat model of experimental endocarditis, using 4 isolates that displayed either extremely low or high adherence phenotypes. Unexpectedly, no differences were observed between the in vivo infectivity of isolates that were poorly and highly adherent in vitro. We concluded that the natural variability of in vitro adherence to fibrinogen and fibronectin did not correlate with in vivo infectivity, and thus that pathogenic differences between various strains might only be expressed in in vivo conditions, but not in vitro. Therefore, considering the importance of adhesins expression for infection, direct measurement of those adhesins present on the bacterial surface were made by proteomic approach. 5 In the second series of experiments we assessed the physical presence of the LPXTG species at the staphylococcal surface, as measured at various time points during growth in different culture media. S. aureus Newman was grown in either tryptic soy broth (TSB) or in Roswell Park Memorial Institute (RPMI) culture medium, and samples were removed from early exponential growth phase to late stationary phase. Experiments were performed with mutants in the global accessory-gene regulator (agr), surface protein A (Spa) and clumping factor A (ClfA). Peptides of surface proteins were recovered by "trypsin-shaving" of live bacteria, and semi-quantitative proteomic analysis was performed by tandem liquid-chromatography and mass-spectrometry (LC-MS). We also determined in parallel the mRNA expression by microarrays analysis, as well as the phenotypic adherence of the bacteria to fibrinogen in vitro. The surface proteome was highly complex and contained numerous proteins theoretically not belonging to the bacterial envelope, including ribosomal proteins and metabolic enzymes. Sixteen of the 21 known LPXTG species were detected, but were differentially expressed. As expected, 9 known agr-regulated proteins (e.g. including Spa, FnBPA, ClfA, IsdA, IsdB, SasH, SasD, SasG and FmtB) increased up to the late exponential growth phase, and were abrogated in agr-negative mutants. However, only Spa and SasH modified their proteomic and mRNA profiles in parallel in the parent and its agr negative mutant, while all other LPXTG proteins modified their proteomic profiles independently of their mRNA. Moreover, ClfA became highly transcribed and active in in vitro fibrinogen adherence tests during late growth (24h), whereas it remained poorly detected by proteomics. Differential expression was also detected in iron-rich TSB versus iron-poor RPMI. Proteins from the iron-regulated surface determinant (isd) system, including IsdA, IsdB and IsdH were barely expressed in iron-rich TSB, whereas they increased their expression by >10 time in iron-poor RPMI. We conclude that semi-quantitative proteomic analysis of specific protein species is feasible in S. aureus and that proteomic, transcriptomic and adherence phenotypes demonstrated differential profiles in S. aureus. Furthermore, peptide signatures released by trypsin shaving suggested differential protein domain exposures in various environments, which might be relevant for antiadhesins vaccines. A comprehensive understanding of the S. aureus physiology should integrate all these approaches.