905 resultados para atrophy signaling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cellular actions of genistein are believed to mediate the decreased risk of breast cancer associated with high soy consumption. We have investigated the intracellular metabolism of genistein in T47D tumorigenic and MCF-10A nontumorigenic cells and assessed the cellular actions of resultant metabolites. Genistein selectively induced growth arrest and G2-M phase cell cycle block in T47D but not MCF10A breast epithelial cells. These antiproliferative effects were paralleled by significant differences in the association of genistein to cells and in particular its intracellular metabolism. Genistein was selectively taken up into T47D cells and was subject to metabolism by CYP450 enzymes leading to the formation of both 5,7,3',4'-tetrahydroxyisoflavone (THIF) and two glutathionyl conjugates of THIF THIF inhibited cdc2 activation via the phosphorylation of p38 MAP kinase, suggesting that this species may mediate genistein's cellular actions. THIF exposure activated p38 and caused subsequent inhibition of cyclin B1 (Ser 147) and cdc2 (Thr 161) phosphorylation, two events critical for the correct functioning of the cdc2-cyclin B1 complex. We suggest that the formation of THIF may mediate the cellular actions of genistein in tumorigenic breast epithelial cells via the activation of signaling through p38. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The regulation of platelet function by pharmacological agents that modulate platelet signaling haspharmacolo proven a successful approach to the prevention of thrombosis. A variety of molecules present in the diet have been shown to inhibit platelet activation, including the antioxidant quercetin. Objectives: In this report we investigate the molecular mechanisms through which quercetin inhibits collagen-stimulated platelet aggregation. Methods: The effect of quercetin on platelet aggregation, intracellular calcium release, whole cell tyrosine phosphorylation and intracellular signaling events including tyrosine phosphorylation and kinase activity of proteins involved in the collagen-stimulated glycoprotein (GP) signaling pathway were investigated. Results: We report that quercetin inhibits collagen-stimulated whole cell protein tyrosine phosphorylation and intracellular mobilization of calcium, in a concentration-dependent manner. Quercetin was also found to inhibit various events in signaling generated by the collagen receptor GPVI. This includes collagen-stimulated tyrosine phosphorylation of the Fc receptor gamma-chain, Syk, LAT and phospholipase Cgamma2. Inhibition of phosphorylation of the Fc receptor gamma-chain suggests that quercetin inhibits early signaling events following stimulation of platelets with collagen. The activity of the kinases that phosphorylate the Fc receptor gamma-chain, Fyn and Lyn, as well as the tyrosine kinase Syk and phosphoinositide 3-kinase was also inhibited by quercetin in a concentration-dependent manner, both in whole cells and in isolation. Conclusions: The present results provide a molecular basis for the inhibition by quercetin of collagen-stimulated platelet activation, through inhibition of multiple components of the GPVI signaling pathway, and may begin to explain the proposed health benefits of high quercetin intake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

G protein-coupled receptors constitute one of the major classes of drug targets, so understanding the mechanisms of signaling through these receptors is of great importance. This review covers some of the recent advances in G protein-coupled receptor signaling. A high resolution structure of the beta(2)-adrenergic receptor has been reported, as well as several molecular switches involved in receptor activation. It has also been realised that receptors and G proteins and their subunits may not always separate upon receptor activation. The definition of the ability of these receptors to signal has been expanded considerably with the realisation that some signaling may occur independently of G proteins, that some signaling events may differ in their pharmacological profiles and that formation of heterodimers of these receptors may provide new avenues for both signaling and drug design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myostatin is a highly conserved, potent negative regulator of skeletal muscle hypertrophy in many species, from rodents to humans, although its mechanisms of action are incompletely understood. Transcript profiling of hearts from a genetic model of cardiac hypertrophy revealed dramatic upregulation of myostatin, not previously recognized to play a role in the heart. Here we show that myostatin abrogates the cardiomyocyte growth response to phenylephrine in vitro through inhibition of p38 and the serine - threonine kinase Akt, a critical determinant of cell size in many species from drosophila to mammals. Evaluation of male myostatin-null mice revealed that their cardiomyocytes and hearts overall were slightly smaller at baseline than littermate controls but exhibited more exuberant growth in response to chronic phenylephrine infusion. The increased cardiac growth in myostatin-null mice corresponded with increased p38 phosphorylation and Akt activation in vivo after phenylephrine treatment. Together, these data demonstrate that myostatin is dynamically regulated in the heart and acts more broadly than previously appreciated to regulate growth of multiple types of striated muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. To identify the role of Notch signaling in the human corneal epithelium. METHODS. Localization of Notch1, Notch2, Delta1, and Jagged1 in the human corneal epithelium was observed with the use of indirect immunofluorescence microscopy. Gene and protein expression of Notch receptors and ligands in human corneal epithelial cells was determined by RT-PCR and Western blot analysis, respectively. The effects of Notch inhibition (by {gamma}-secretase inhibition) and activation (by recombinant Jagged1) on epithelial cell proliferation (Ki67) and differentiation (CK3) were analyzed after Western blotting and immunocytochemistry. RESULTS. Immunofluorescent labeling localized Notch1 and Notch2 to suprabasal epithelial cell layers, whereas Delta1 and Jagged1 were observed throughout the corneal epithelium. Notch1, Notch2, Delta1, and Jagged1 genes and proteins were expressed in human corneal epithelial cells. {gamma}-Secretase inhibition resulted in decreased Notch1 and Notch2 expression, with an accompanying decrease in Ki67 and increased CK3 expression. The activation of Notch by Jagged1 resulted in the upregulation of active forms of Notch1 and 2 proteins (P < 0.05), with a concurrent increase in Ki67 (P < 0.05) and a decrease in CK3 (P < 0.05) expression. Interestingly, {gamma}-secretase inhibition in a three-dimensional, stratified corneal epithelium equivalent had no effect on Ki67 or CK3 expression. In contrast, Jagged1 activation resulted in decreased CK3 expression (P < 0.05), though neither Notch activation nor inhibition affected cell proliferation in the 3D tissue equivalent. CONCLUSIONS. Notch family members and ligands are expressed in the human corneal epithelium and appear to play pivotal roles in corneal epithelial cell differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Posterior cortical atrophy (PCA) is a type of dementia that is characterized by visuo-spatial and memory deficits, dyslexia and dysgraphia, relatively early onset and preserved insight. Language deficits have been reported in some cases of PCA. Using an off-line grammaticality judgement task, processing of wh-questions is investigated in a case of PCA. Other aspects of auditory language are also reported. It is shown that processing of wh-questions is influenced by syntactic structure, a novel finding in this condition. The results are discussed with reference to accounts of wh-questions in aphasia. An uneven profile of other language abilities is reported with deficits in digit span (forward, backward), story retelling ability, comparative questions but intact abilities in following commands, repetition, concept definition, generative naming and discourse comprehension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much recent interest has focused on the potential of flavonoids to interact with intracellular signaling pathways such as with the mitogen-activated protein kinase cascade. We have investigated whether the observed strong neurotoxic potential of quercetin in primary cortical neurons may occur via specific and sensitive interactions within neuronal mitogen-activated protein kinase and Akt/protein kinase B (PKB) signaling cascades, both implicated in neuronal apoptosis. Quercetin induced potent inhibition of both Akt/PKB and ERK phosphorylation, resulting in reduced phosphorylation of BAD and a strong activation of caspase-3. High quercetin concentrations (30 microM) led to sustained loss of Akt phosphorylation and subsequent Akt cleavage by caspase-3, whereas at lower concentrations (<10 microM) the inhibition of Akt phosphorylation was transient and eventually returned to basal levels. Lower levels of quercetin also induced strong activation of the pro-survival transcription factor cAMP-responsive element-binding protein, although this did not prevent neuronal damage. O-Methylated quercetin metabolites inhibited Akt/PKB to lesser extent and did not induce such strong activation of caspase-3, which was reflected in the lower amount of damage they inflicted on neurons. In contrast, neither quercetin nor its O-methylated metabolites had any measurable effect on c-Jun N-terminal kinase phosphorylation. The glucuronide of quercetin was not toxic and did not evoke any alterations in neuronal signaling, probably reflecting its inability to enter neurons. Together these data suggest that quercetin and to a lesser extent its O-methylated metabolites may induce neuronal death via a mechanism involving an inhibition of neuronal survival signaling through the inhibition of both Akt/PKB and ERK rather than by an activation of the c-Jun N-terminal kinase-mediated death pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a convenient signaling scheme-orthogonal on-off BPSK (O3BPSK)-for near-far (NF) resistant detection in asynchronous direct-sequence code-division multiple-access (DS/CDMA) systems (uplink). The temporally adjacent bits from different users in the received signals are decoupled by using the on-off signaling, and the original data rate is maintained with no increase in transmission rate by adopting an orthogonal structure. The detector at the receiver is a one-shot linear decorrelating detector, which depends upon neither hard decision nor specific channel coding. The application of O3 strategy to the differentially encoded BPSK (D-BPSK) sequences is also presented. Finally, some computer simulations are shown to confirm the theoretical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new signaling scheme: orthogonal on-off BPSK (O3BPSK), for near-far resistant detection in the asynchronous DS/CDMA systems (up-link). The temporally adjacent bits from different users in the received signals are decoupled by using the on-off signaling, and the original data rate is maintained with no increase in transmission rate by adopting an orthogonal structure. The detector at the receiver is a one-shot linear decorrelating detector, which depends upon neither hard-decision nor specific channel coding. Some computer simulations are shown to confirm the theoretical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arterial hyperpolarization to acetylcholine (ACh) reflects coactivation of KCa3.1 (IKCa) channels and KCa2.3 (SKCa) channels in the endothelium that transfers through myoendothelial gap junctions and diffusible factor(s) to affect smooth muscle relaxation (endothelium-derived hyperpolarizing factor [EDHF] response). However, ACh can differentially activate KCa3.1 and KCa2.3 channels, and we investigated the mechanisms responsible in rat mesenteric arteries. KCa3.1 channel input to EDHF hyperpolarization was enhanced by reducing external [Ca2+]o but blocked either with forskolin to activate protein kinase A or by limiting smooth muscle [Ca2+]i increases stimulated by phenylephrine depolarization. Imaging [Ca2+]i within the endothelial cell projections forming myoendothelial gap junctions revealed increases in cytoplasmic [Ca2+]i during endothelial stimulation with ACh that were unaffected by simultaneous increases in muscle [Ca2+]i evoked by phenylephrine. If gap junctions were uncoupled, KCa3.1 channels became the predominant input to EDHF hyperpolarization, and relaxation was inhibited with ouabain, implicating a crucial link through Na+/K+-ATPase. There was no evidence for an equivalent link through KCa2.3 channels nor between these channels and the putative EDHF pathway involving natriuretic peptide receptor-C. Reconstruction of confocal z-stack images from pressurized arteries revealed KCa2.3 immunostain at endothelial cell borders, including endothelial cell projections, whereas KCa3.1 channels and Na+/K+-ATPase {alpha}2/{alpha}3 subunits were highly concentrated in endothelial cell projections and adjacent to myoendothelial gap junctions. Thus, extracellular [Ca2+]o appears to modify KCa3.1 channel activity through a protein kinase A-dependent mechanism independent of changes in endothelial [Ca2+]i. The resulting hyperpolarization links to arterial relaxation largely through Na+/K+-ATPase, possibly reflecting K+ acting as an EDHF. In contrast, KCa2.3 hyperpolarization appears mainly to affect relaxation through myoendothelial gap junctions. Overall, these data suggest that K+ and myoendothelial coupling evoke EDHF-mediated relaxation through distinct, definable pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a 130-kd transmembrane glycoprotein and a member of the growing family of receptors with immunoreceptor tyrosine-based inhibitory motifs (ITIMs). PECAM-1 is expressed on platelets, certain T cells, monocytes, neutrophils, and vascular endothelial cells and is involved in a range of cellular processes, though the role of PECAM-1 in platelets is unclear. Cross-linking of PECAM-1 results in phosphorylation of the ITIM allowing the recruitment of signaling proteins that bind by way of Src-homology domain 2 interactions. Proteins that have been implicated in the negative regulation of cellular activation by ITIM-bearing receptors include the tyrosine phosphatases SHP-1 and SHP-2. Tyrosine phosphorylation of immunoreceptor tyrosine-based activatory motif (ITAM)-bearing receptors such as the collagen receptor GPVI-Fc receptor gamma-chain complex on platelets leads to activation. Increasing evidence suggests that ITIM- and ITAM-containing receptors may act antagonistically when expressed on the same cell. In this study it is demonstrated that cross-linking PECAM-1 inhibits the aggregation and secretion of platelets in response to collagen and the GPVI-selective agonist convulxin. In these experiments thrombin-mediated platelet aggregation and secretion were also reduced, albeit to a lesser degree than for collagen, suggesting that PECAM-1 function may not be restricted to the inhibition of ITAM-containing receptor pathways. PECAM-1 activation also inhibited platelet protein tyrosine phosphorylation stimulated by convulxin and thrombin; this was accompanied by inhibition of the mobilization of calcium from intracellular stores. These data suggest that PECAM-1 may play a role in the regulation of platelet function in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously identified allosteric modulators of the cannabinoid CB1 receptor (Org 27569, PSNCBAM-1) which display a contradictory pharmacological profile: increasing the specific binding of the CB1 receptor agonist [3H]CP55940 but producing a decrease in CB1 receptor agonist efficacy. Here we investigated the effect one or both compounds in a broad range of signalling endpoints linked to CB1 receptor activation. We assessed the effect of these compounds on CB1 receptor agonist-induced [35S]GTPγS binding, inhibition and stimulation of forskolin stimulated cAMP production, phosphorylation of ERK, and β arrestin recruitment. We also investigated the effect of these allosteric modulators on CB1 agonist binding kinetics. Both compounds display ligand dependence, being significantly more potent as modulators of CP55940 signalling as compared to WIN55212 and having little effect on [3H]WIN55212 binding. Org 27569 displays biased antagonism whereby it inhibits: agonist-induced [35S]GTPγS binding, simulation (Gαs mediated) and inhibition (Gαi mediated) of cAMP production and β arrestin recruitment. In contrast, it acts as an enhancer of agonist-induced ERK phosphoryation. Alone, the compound can act also as an allosteric agonist, increasing cAMP production and ERK phosphorylation. We find that in both saturation and kinetic binding experiments, the Org 27569 and PSNCBAM-1 appeared to influence only orthosteric ligand maximum occupancy rather than affinity. The data indicate that the allosteric modulators share a common mechanism whereby they increase available high affinity CB1 agonist binding sites. The receptor conformation stabilised by the allosterics appears to induce signalling and also selectively traffics orthosteric agonist signalling via the ERK phosphorylation pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are expressed throughout the nervous system where they regulate multiple physiological processes, participate in neurological diseases, and are major targets for therapy. Given that many GPCRs respond to neurotransmitters and hormones that are present in the extracellular fluid and which do not readily cross the plasma membrane, receptor trafficking to and from the plasma membrane is a critically important determinant of cellular responsiveness. Moreover, trafficking of GPCRs throughout the endosomal system can initiate signaling events that are mechanistically and functionally distinct from those operating at the plasma membrane. This review discusses recent advances in the relationship between signaling and trafficking of GPCRs in the nervous system. It summarizes how receptor modifications influence trafficking, discusses mechanisms that regulate GPCR trafficking to and from the plasma membrane, reviews the relationship between trafficking and signaling, and considers the implications of GPCR trafficking to drug development.