971 resultados para atomic physics, quantum physics, Penning traps, proton, magnetic moment
Resumo:
量子相干控制前沿问题及应用研究是本世纪物理学前沿领域的重要研究内容.而基于暗态的量子相干控制技术已经导致了在相干布居捕获、绝热跟随、量子信息等多方面的应用.论文主要进行双暗态原子系统动力学行为的若干量子相干控制研究,包括双暗态四能级原子系统的绝热跟随特性研究,双暗态作用提高克尔非线性的新方案提出,自发辐射诱导相干实现非线性极化率的提高以及双通道高效四波混频过程的实现等.
Resumo:
We investigate the steady-state optical bistability behavior in a three-level A-type atomic system closed by a microwave field under the condition that the applied fields are in resonance with corresponding atomic transitions. It is shown that the bistable hysteresis cycles can be controlled by both the amplitude and the phase of the microwave field. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Ternary alloys of nickel-palladium-phosphorus and iron-palladium- phosphorus containing 20 atomic % phosphorus were rapidly quenched from the liquid state. The structure of the quenched alloys was investigated by X-ray diffraction. Broad maxima in the diffraction patterns, indicative of a glass-like structure, were obtained for 13 to 73 atomic % nickel and 13 to 44 atomic % iron, with palladium adding up to 80%.
Radial distribution functions were computed from the diffraction data and yielded average interatomic distances and coordination numbers. The structure of the amorphous alloys could be explained in terms of structural units analogous to those existing in the crystalline Pd3P, Ni3P and Fe3P phases, with iron or nickel substituting for palladium. A linear relationship between interatomic distances and composition, similar to Vegard's law, was shown for these metallic glasses.
Electrical resistivity measurements showed that the quenched alloys were metallic. Measurements were performed from liquid helium temperatures (4.2°K) up to the vicinity of the melting points (900°K- 1000°K). The temperature coefficient in the glassy state was very low, of the order of 10-4/°K. A resistivity minimum was found at low temperature, varying between 9°K and 14°K for Nix-Pd80-x -P20 and between 17°K and 96°K for Fex-Pd80-x -P20, indicating the presence of a Kondo effect. Resistivity measurements, with a constant heating rate of about 1.5°C/min,showed progressive crystallization above approximately 600°K.
The magnetic moments of the amorphous Fe-Pd-P alloys were measured as a function of magnetic field and temperature. True ferromagnetism was found for the alloys Fe32-Pd48-P20 and Fe44-Pd36-P20 with Curie points at 165° K and 380° K respectively. Extrapolated values of the saturation magnetic moments to 0° K were 1.70 µB and 2.10 µB respectively. The amorphous alloy Fe23-Pd57-P20 was assumed to be superparamagnetic. The experimental data indicate that phosphorus contributes to the decrease of moments by electron transfer, whereas palladium atoms probably have a small magnetic moment. A preliminary investigation of the Ni-Pd-P amorphous alloys showed that these alloys are weakly paramagnetic.
Resumo:
We study the possibility of manipulating the focusing properties of a medium with electromagnetically induced transparency. In the focal region of focused ultraslow light pulses, the spectral anomalous behaviors can be actively modified by varying the control field intensity. Unlike the case in free space, we find in slow light focusing that the spectrum bandwidth of the incident field needed to produce observable spectral changes can be reduced by several orders. Numerical simulations with accessible parameters clearly show that spectral anomalies of focused mu s pulses are observable.
Resumo:
利用拉曼光场代替喷泉原子钟的微波腔实现拉曼喷泉原子钟。将分离拉曼光场技术与冷原子喷泉技术相结合,避免了在真空腔内放置微波腔,简化了真空系统,同时还保持了很高的准确度。采用半经典理论研究了冷原子喷泉与拉曼光场的相互作用过程,得到了冉赛(Ramsey)条纹。比较了拉曼喷泉原子钟与热铯束拉曼原子钟,前者有更小的体积和功耗,其精度可能达到或超过商用小铯钟。还比较了拉曼喷泉原子钟与微波喷泉原子钟的差别,分析了光子反冲的影响,提出利用同向传播和相向传播的两台拉曼原子钟测量精细结构常数。
Resumo:
Part I.
The interaction of a nuclear magnetic moment situated on an internal top with the magnetic fields produced by the internal as well as overall molecular rotation has been derived following the method of Van Vleck for the spin-rotation interaction in rigid molecules. It is shown that the Hamiltonian for this problem may be written
HSR = Ῑ · M · Ĵ + Ῑ · M” · Ĵ”
Where the first term is the ordinary spin-rotation interaction and the second term arises from the spin-internal-rotation coupling.
The F19 nuclear spin-lattice relaxation time (T1) of benzotrifluoride and several chemically substituted benzotrifluorides, have been measured both neat and in solution, at room temperature by pulsed nuclear magnetic resonance. From these experimental results it is concluded that in benzotrifluoride the internal rotation is crucial to the spin relaxation of the fluorines and that the dominant relaxation mechanism is the fluctuating spin-internal-rotation interaction.
Part II.
The radiofrequency spectrum corresponding to the reorientation of the F19 nuclear moment in flurobenzene has been studied by the molecular beam magnetic resonance method. A molecular beam apparatus with an electron bombardment detector was used in the experiments. The F19 resonance is a composite spectrum with contributions from many rotational states and is not resolved. A detailed analysis of the resonance line shape and width by the method of moments led to the following diagonal components of the fluorine spin-rotational tensor in the principal inertial axis system of the molecule:
F/Caa = -1.0 ± 0.5 kHz
F/Cbb = -2.7 ± 0.2 kHz
F/Ccc = -1.9 ± 0.1 kHz
From these interaction constants, the paramagnetic contribution to the F19 nuclear shielding in C6H5F was determined to be -284 ± ppm. It was further concluded that the F19 nucleus in this molecule is more shielded when the applied magnetic field is directed along the C-F bond axis. The anisotropy of the magnetic shielding tensor, σ” - σ⊥, is +160 ± 30 ppm.
Resumo:
Polycrystalline Zn1-xNixO diluted magnetic semiconductors have been successfully synthesized by an auto-combustion method. X-ray diffraction measurements indicated that the 5 at% Ni-cloped ZnO had the pure wurtzite structure. Refinements of cell parameters from powder diffraction data revealed that the cell parameters of Zn0.95Ni0.05O were a little bit larger than ZnO. Transmission electron microscopy observation showed that the as-synthesized powders were of the size similar to 60 nm. Magnetic investigations showed that the nanocystalline Zn0.95Ni0.05O possessed room temperature ferromagnetisin with the saturation magnetic moment of 0.1 emu/g (0.29 mu(B)/Ni2+). (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The electronic and magnetic properties of the transition metal sesqui-oxides Cr(2)O(3), Ti(2)O(3), and Fe(2)O(3) have been calculated using the screened exchange (sX) hybrid density functional. This functional is found to give a band structure, bandgap, and magnetic moment in better agreement with experiment than the local density approximation (LDA) or the LDA+U methods. Ti(2)O(3) is found to be a spin-paired insulator with a bandgap of 0.22 eV in the Ti d orbitals. Cr(2)O(3) in its anti-ferromagnetic phase is an intermediate charge transfer Mott-Hubbard insulator with an indirect bandgap of 3.31 eV. Fe(2)O(3), with anti-ferromagnetic order, is found to be a wide bandgap charge transfer semiconductor with a 2.41 eV gap. Interestingly sX outperforms the HSE functional for the bandgaps of these oxides.
Resumo:
Several experimental techniques have been used in order to characterize the properties of multifilamentary Bi-2223 / Ag tapes. Pristine samples were investigated by electrical resistivity, current-voltage characteristics and DC magnetic moment measurements. Much emphasis is placed on comparing transport (direct) and magnetic (indirect) methods for determining the critical current density as well as the irreversibility line and resolving usual lacks of consistency due to the difference in measurement techniques and data analysis. The effect of an applied magnetic field, with various strengths and directions, is also studied and discussed. Next, the same combination of experiments was performed on bent tapes in order to bring out relevant information regarding the intergranular coupling. A modified Brandt model taking into account different types of defects within the superconducting filaments is proposed to reconciliate magnetic and transport data.
Resumo:
The magnetic properties of RCo5Ga7 (R = Y, Tb, Dy, Ho and Er) compounds which crystallize in the ScFe6Ga6-type structure have been studied. The compounds with R, Y, Tb, Dy, Ho and Er display behaviour similar to semiconductors. The Co transition metal sublattice is ferrimagnetic with a very low spontaneous magnetization. The ferrimagnetic ordering observed for R = Y, Tb, Dy, Ho and Er is due to the transition metal sublattice with transition temperatures at about 295 K. At low temperatures, the magnetic ordering for R Tb, Dy, Ho and Er is due to the rare-earth sublattice, which is ferromagnetic with a Curie temperature below 5 K. By fitting the linear part of the inverse magnetization, the effective magnetic moment of the R ion is found to be close to its expected theoretical value, with paramagnetic Curie temperatures below 5 K. Due to the paramagnetic nature of the R sublattice above 60 K, the ferrimagnetic ordering temperature of the Co sublattice does not vary with the type of rare-earth ion. The irreversibility of the magnetization of YCo5Ga7, as measured in zero-field cooled (ZFC) and field cooled (FC) states, is attributed to movement of domain walls. Application of a large enough applied field completes the movement of the domain wall from the low-temperature to the high-temperature one at 5 K. With a very low magnetic field 100 Oe, the difference between the ZFC and the FC shrinks. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The magnetic/nonmagnetic p-n junction was prepared by implanting gadolinium into the n-type silicon with low-energy dual-ion-beam epitaxy technology. The magnetic layer GdxSi1-x shows excellent magnetic properties at room temperature. High magnetic moment 10mu(B) per Gd atom is observed, which is interpreted by RKKY mechanism. Magnetic/nonmagnetic p-n junctions show rectifying behaviour, but no magnetoresistance is observed.
Fe-57 Mossbauer spectroscopic and magnetic studies of R3Fe29-xVx (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy)
Resumo:
Mossbauer spectra for Fe atoms in the series of R3Fe29-xVx (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) compounds were collected at 4.2 K. The ratio of 14.5 T/mu(B) between the average hyperfine field B-hf and the average Fe magnetic moment mu(Fe)(MS), obtained from our data, in Y3Fe29-xVx is in agreement with that deduced from the RxTy alloys by Gubbens et al. The average Fe magnetic moments mu(Fe)(MS) in these compounds at 4.2 K, deduced from our Mossbauer spectroscopic studies, are in accord with the results of magnetization measurement. The average hyperfine field of the Fe sites for R3Fe29-xVx at 4.2 K increases with increasing values of the rare earth effective spin (g(J) - 1) J, which indicates that there exists a transferred spin polarization induced by the neighboring rare earth atom.
Resumo:
A theoretical study is presented of the lateral confinement potential (CP) in the very narrow mesa channels fabricated in the conventional two-dimensional (2D) electron gas in GaAs-AlxGa1-xAs heterostructures. The ID electronic structures are calculated in the framework of the confinement potential: V(x) = m* omega0(2)x2/2 for Absolute value of x
Fe-57 Mossbauer spectroscopic and magnetic studies of R3Fe29-xVx (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy)
Resumo:
Mossbauer spectra for Fe atoms in the series of R3Fe29-xVx (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) compounds were collected at 4.2 K. The ratio of 14.5 T/mu(B) between the average hyperfine field B-hf and the average Fe magnetic moment mu(Fe)(MS), obtained from our data, in Y3Fe29-xVx is in agreement with that deduced from the RxTy alloys by Gubbens et al. The average Fe magnetic moments mu(Fe)(MS) in these compounds at 4.2 K, deduced from our Mossbauer spectroscopic studies, are in accord with the results of magnetization measurement. The average hyperfine field of the Fe sites for R3Fe29-xVx at 4.2 K increases with increasing values of the rare earth effective spin (g(J) - 1) J, which indicates that there exists a transferred spin polarization induced by the neighboring rare earth atom.
Resumo:
A new compound, IrMnSi, has been synthesized, and its crystal structure and magnetic properties have been investigated by means of neutron powder diffraction, magnetization measurements, and first-principles theory. The crystal structure is found to be of the TiNiSi type (ordered Co2P, space group Pnma). The Mn-projected electronic states are situated at the Fermi level, giving rise to metallic binding, whereas a certain degree of covalent character is observed for the chemical bond between the It and Si atoms. A cycloidal, i.e., noncollinear, magnetic structure was observed below 460 K, with the propagation vector q=[0,0,0.4530(5)] at 10 K. The magnetism is dominated by large moments on the Mn sites, 3.8 mu(B)/atom from neutron diffraction. First-principles theory reproduces the propagation vector of the experimental magnetic structure as well as the angles between the Mn moments. The calculations further result in a magnetic moment of 3.21 mu(B) for the Mn atoms, whereas the Ir and Si moments are negligible, in agreement with observations. A calculation that more directly incorporates electron-electron interactions improves the agreement between the theoretical and experimental magnetic moments. A band mechanism is suggested to explain the observed magnetic order.