384 resultados para arbuscular-mycorrhizal
Resumo:
Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur) and proximal region (where symbiosomes are mainly differentiating), as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital "in situ''. This digital "in situ'' offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies.
Resumo:
Background: Anthropogenic disturbance of old-growth tropical forests increases the abundance of early successional tree species at the cost of late successional ones. Quantifying differences in terms of carbon allocation and the proportion of recently fixed carbon in soil CO2 efflux is crucial for addressing the carbon footprint of creeping degradation. Methodology: We compared the carbon allocation pattern of the late successional gymnosperm Podocarpus falcatus (Thunb.) Mirb. and the early successional (gap filling) angiosperm Croton macrostachyus Hochst. es Del. in an Ethiopian Afromontane forest by whole tree (CO2)-C-13 pulse labeling. Over a one-year period we monitored the temporal resolution of the label in the foliage, the phloem sap, the arbuscular mycorrhiza, and in soil-derived CO2. Further, we quantified the overall losses of assimilated C-13 with soil CO2 efflux. Principal Findings: C-13 in leaves of C. macrostachyus declined more rapidly with a larger size of a fast pool (64% vs. 50% of the assimilated carbon), having a shorter mean residence time (14 h vs. 55 h) as in leaves of P. falcatus. Phloem sap velocity was about 4 times higher for C. macrostachyus. Likewise, the label appeared earlier in the arbuscular mycorrhiza of C. macrostachyus and in the soil CO2 efflux as in case of P. falcatus (24 h vs. 72 h). Within one year soil CO2 efflux amounted to a loss of 32% of assimilated carbon for the gap filling tree and to 15% for the late successional one. Conclusions: Our results showed clear differences in carbon allocation patterns between tree species, although we caution that this experiment was unreplicated. A shift in tree species composition of tropical montane forests (e. g., by degradation) accelerates carbon allocation belowground and increases respiratory carbon losses by the autotrophic community. If ongoing disturbance keeps early successional species in dominance, the larger allocation to fast cycling compartments may deplete soil organic carbon in the long run.
Resumo:
Vegetative propagation of superior conifer trees can be achieved e.g. through rooted cuttings or rooted microshoots, the latter predominantly through in vitro tissue culture. Both techniques are used to achieve rapid multiplication of trees with favorable genetic combinations and to capture a large proportion of the genetic diversity in a single generation cycle. However, adventitious rooting of shoots (cuttings) is often not efficient due to various problems such as scarcity of roots and cessation of their growth, both of which limit the application of vegetative propagation in some conifer species. Many factors are involved in the adventitious rooting of shoots including physical and chemical ones such as plant growth regulators, carbohydrates, light quality, temperature and rooting substrates or media (reviewed by Ragonezi et al. 2010). The focus of this review is on biological factors, such as inoculations with Agrobacterium rhizogenes, plant- growth-promoting rhizobacteria and other endophytes, and mycorrhizal fungi, which were found to stimulate adventitious rooting. These microorganisms could contribute not only to adventitious root development but also help in protecting conifer plants against pathogenic microorganisms, facilitate acclimation and transplanting, and contribute to more sustainable, chemical-free forests.
Resumo:
Soil horizons below 30 cm depth contain about 60% of the organic carbon stored in soils. Although insight into the physical and chemical stabilization of soil organic matter (SUM) and into microbial community composition in these horizons is being gained, information on microbial functions of subsoil microbial communities and on associated microbially-mediated processes remains sparse. To identify possible controls on enzyme patterns, we correlated enzyme patterns with biotic and abiotic soil parameters, as well as with microbial community composition, estimated using phospholipid fatty acid profiles. Enzyme patterns (i.e. distance-matrixes calculated from these enzyme activities) were calculated from the activities of six extracellular enzymes (cellobiohydrolase, leucine-amino-peptidase, N-acetylglucosaminidase, chitotriosidase, phosphatase and phenoloxidase), which had been measured in soil samples from organic topsoil horizons, mineral topsoil horizons, and mineral subsoil horizons from seven ecosystems along a 1500 km latitudinal transect in Western Siberia. We found that hydrolytic enzyme activities decreased rapidly with depth, whereas oxidative enzyme activities in mineral horizons were as high as, or higher than in organic topsoil horizons. Enzyme patterns varied more strongly between ecosystems in mineral subsoil horizons than in organic topsoils. The enzyme patterns in topsoil horizons were correlated with SUM content (i.e., C and N content) and microbial community composition. In contrast, the enzyme patterns in mineral subsoil horizons were related to water content, soil pH and microbial community composition. The lack of correlation between enzyme patterns and SUM quantity in the mineral subsoils suggests that SOM chemistry, spatial separation or physical stabilization of SUM rather than SUM content might determine substrate availability for enzymatic breakdown. The correlation of microbial community composition and enzyme patterns in all horizons, suggests that microbial community composition shapes enzyme patterns and might act as a modifier for the usual dependency of decomposition rates on SUM content or C/N ratios. (C) 2015 The Authors. Published by Elsevier Ltd.
Resumo:
O objetivo deste estudo foi avaliar o efeito de fungos micorrízicos arbusculares (FMAs), da adubação e da composição do substrato no crescimento de mudas de Eugenia uniflora. As sementes foram germinadas em vermiculita média e repicadas para tubetes (100 cm3) contendo substratos à base de vermicomposto e casca de arroz carbonizada e, como controle, utilizou-se do substrato comercial à base de casca de pínus. Estes substratos foram testados com e sem inoculação micorrízica, adicionada ao substrato, como também se testaram a presença e a ausência de adubação de cobertura. Foram analisadas as propriedades físico-químicas dos substratos formulados. Avaliaram-se a altura, o diâmetro do colo, a agregação das raízes ao substrato, a biomassa seca aérea, a biomassa seca radicial e foram determinados a relação entre altura e diâmetro do colo e o índice de qualidade de Dickson. A inoculação com FMAs não influenciou no crescimento das mudas, enquanto a interação entre substratos e adubação foi significativa para a maioria das variáveis. A ausência de resposta aos FMAs foi, provavelmente, devido às altas concentrações de fósforo nestes substratos. Concluiu-se que o substrato à base de vermicomposto e casca de arroz carbonizada, na proporção de 20/80, pode ser utilizado na produção de mudas desta espécie.
Resumo:
Las orquídeas producen abundantes semillas pequeñas, careciendo de endospermo, cotiledones y sustancias de reserva para llevar a cabo su germinación. Es por esto que estratégicamente las semillas establecen una relación simbiótica con un hongo micorrízico que favorece a su germinación y desarrollo. El objetivo de este estudio fue determinar la especificidad del hongo micorrízico (Rhizoctonia sp.) en la germinación de cinco géneros de orquídeas. Se usaron dos medios de cultivo: 1) PhytamaxTM y 2) avena-agar+Rhizoctonia sp. Los resultados evaluados a los 45 y 75 días demuestran que no existe especificidad entre el hongo Rhizoctonia sp. y Trichoceros antenifer, especie de la cual se aisló el hongo. La germinación en tres de los cinco géneros evaluados fue mayor en el tratamiento avena-agar+Rhizoctonia sp., evidenciando también mayor tamaño y vigor las plantas que se desarrollaron en este tratamiento, aunque estos datos no fueron evaluados. Los resultados sugieren también que la planta hospedera del hongo inoculado podría tener una ventaja en cuanto al tiempo requerido para su germinación; sin embargo otras, especies también se ven favorecidas con el inóculo, aunque éste sea obtenido de otra fuente.
Resumo:
Ectomycorrhizal associations are poorly known from tropical lowlands of South America. Recent field trips to the reserve Parque Estadual das Dunas in Natal, in Rio Grande do Norte state, Brazil, revealed a undocumented community of ectomycorrhizal fungi. This type of Mycorrhizal association is frequently in the north hemisphere in temperate and boreal forests. The aim of this work is to analyze the occurrence of ectotrophic areas in atlantic rainforest. Collections along and around the trails in the reserve revealed six genera of putatively ECM fungi which belong to the basidiomycete, Amanitaceae, Boletaceae, Russulaceae, Entolomataceae, and Sclerodermataceae family which are poorly documented in Brazil. Plants belonging to Myrtaceae, Polygonaceae, Leguminosae/Caesalpinioideae, Erythroxylaceae, Malphigiaceae, Bromeliaceae, Loganiaceae, Sapotaceae e Celastraceae were found living next to the species of fungi analized. Our results suggest that the area studied is an ectotrophic environment which shows high diversity of putatively ECM fungi and some plants probably host ECM. The tropical lands are a potential focus to study reinforced by the new records of Scleroderma in Brazil and Northwest of Brazil
Resumo:
Nursery grown seedlings are an essential part of the forestry industry. These seedlings are grown under high nutrient conditions caused by fertilization. Though grown in a controlled environment, symbionts such as ectomycorrhizal fungi (EcMF) are often found in these conditions. To examine the effects of EcMF in these conditions, colonized Picea glauca seedlings were collected from Toumey Nursery in Watersmeet, MI. After collection, the EcMF present were morphotyped, and seedlings with different morphotypes were divided equally into two treatment types- fertilized and unfertilized. Seedlings received treatment for one growing season. After that time, seedlings were collected, ectomycorrhizas identified using morphotyping and DNA sequencing, and seedlings were analyzed for differences in leaf nutrient concentration, content, root to shoot ratio, total biomass, and EcMF community structure. DNA sequencing identified 5 unique species groups- Amphinema sp. 1, Amphinema sp. 5, Thelephora terrestris, Sphaerosporella brunnea, and Boletus variipes. In the unfertilized treatment it was found that Amphinema sp. 1 strongly negatively impacted foliar N concentration. In fertilized seedlings, Thelephora terrestris had a strong negative impact on foliar phosphorus concentration, while Amphinema sp. 1 positively impacted foliar boron, magnesium, manganese, and phosphorus concentration. In terms of content, Amphinema sp. 1 led to significantly higher content of manganese and boron in fertilized treatments, as well as elevated phosphorus in unfertilized seedlings. Amphinema sp. 5 had a significant negative effect on phosphorus content. When examining root to shoot ratio and biomass, those seedlings with more non-mycorrhizal tips had a higher root to shoot ratio. Findings from the study shed light on the interactions of the species. Amphinema sp. 5 shows very different functionality than Amphinema sp. 1. Amphinema sp. 1 appears to have the highest positive effect on seedling nutrition when in both fertilized and unfertilized environments. Amphinema sp. 5 and T. terrestris appear to behave parasitically in both fertilized and unfertilized conditions.
Resumo:
Avaliaram-se os efeitos da micorriza vesicular-arbuscular e das doses de fósforo sobre o crescimento e a absorção de nutrientes em mudas de seringueira, em casa-de-vegetação. Os tratamentos constaram de três doses de fósforo: 0,9; 1,8 e 2,7 g de P2O5/planta, tendo como fonte o superfosfato triplo, e dois tratamentos de inoculação: não-inoculado e inoculado com Gigaspora margarita, ambos em solo não-esterilizado. Os parâmetros analisados foram infecção radicular, altura das plantas, diâmetro do caule, peso da matéria seca da parte aérea, teor foliar e absorção de N, P, K, Ca, Mg, S, B, Fe, Mn e Zn em materiais coletados nove meses após a instalação do experimento. A aplicação da dose de 2,7 g de P2O5/planta favoreceu a infecção radicular e 2,7 g dc P2O5/planta. O fornecimento de B ao solo, na concentração de 1 mg/kg, induziu níveis do toxicidade nas plantas.