466 resultados para antiproliferative immunosuppressant


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proliferation of various tumors is inhibited by the antagonists of growth hormone-releasing hormone (GHRH) in vitro and in vivo, but the receptors mediating the effects of GHRH antagonists have not been identified so far. Using an approach based on PCR, we detected two major splice variants (SVs) of mRNA for human GHRH receptor (GHRH-R) in human cancer cell lines, including LNCaP prostatic, MiaPaCa-2 pancreatic, MDA-MB-468 breast, OV-1063 ovarian, and H-69 small-cell lung carcinomas. In addition, high-affinity, low-capacity binding sites for GHRH antagonists were found on the membranes of cancer cell lines such as MiaPaCa-2 that are negative for the vasoactive intestinal peptide/pituitary adenylate cyclase-activating polypeptide receptor (VPAC-R) or lines such as LNCaP that are positive for VPAC-R. Sequence analysis of cDNAs revealed that the first three exons in SV1 and SV2 are replaced by a fragment of retained intron 3 having a new putative in-frame start codon. The rest of the coding region of SV1 is identical to that of human pituitary GHRH-R, whereas in SV2 exon 7 is spliced out, resulting in a 1-nt upstream frameshift, which leads to a premature stop codon in exon 8. The intronic sequence may encode a distinct 25-aa fragment of the N-terminal extracellular domain, which could serve as a proposed signal peptide. The continuation of the deduced protein sequence coded by exons 4–13 in SV1 is identical to that of pituitary GHRH-R. SV2 may encode a GHRH-R isoform truncated after the second transmembrane domain. Thus SVs of GHRH-Rs have now been identified in human extrapituitary cells. The findings support the view that distinct receptors are expressed on human cancer cells, which may mediate the antiproliferative effect of GHRH antagonists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FKBP12, the 12-kDa FK506-binding protein, is a ubiquitous abundant protein that acts as a receptor for the immunosuppressant drug FK506, binds tightly to intracellular calcium release channels and to the transforming growth factor β (TGF-β) type I receptor. We now demonstrate that cells from FKBP12-deficient (FKBP12−/−) mice manifest cell cycle arrest in G1 phase and that these cells can be rescued by FKBP12 transfection. This arrest is mediated by marked augmentation of p21(WAF1/CIP1) levels, which cannot be further augmented by TGF-β1. The p21 up-regulation and cell cycle arrest derive from the overactivity of TGF-β receptor signaling, which is normally inhibited by FKBP12. Cell cycle arrest is prevented by transfection with a dominant-negative TGF-β receptor construct. TGF-β receptor signaling to gene expression can be mediated by SMAD, p38, and ERK/MAP kinase (extracellular signal-regulated kinase/mitogen-activated protein kinase) pathways. SMAD signaling is down-regulated in FKBP12−/− cells. Inhibition of ERK/MAP kinase fails to affect p21 up-regulation. By contrast, activated phosphorylated p38 is markedly augmented in FKBP12−/− cells and the p21 up-regulation is prevented by an inhibitor of p38. Thus, FKBP12 is a physiologic regulator of cell cycle acting by normally down-regulating TGF-β receptor signaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuronal progenitors and tumor cells possess propensity to proliferate and to migrate. Glutamate regulates proliferation and migration of neurons during development, but it is not known whether it influences proliferation and migration of tumor cells. We demonstrate that glutamate antagonists inhibit proliferation of human tumor cells. Colon adenocarcinoma, astrocytoma, and breast and lung carcinoma cells were most sensitive to the antiproliferative effect of the N-methyl-d-aspartate antagonist dizocilpine, whereas breast and lung carcinoma, colon adenocarcinoma, and neuroblastoma cells responded most favorably to the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonist GYKI52466. The antiproliferative effect of glutamate antagonists was Ca2+ dependent and resulted from decreased cell division and increased cell death. Morphological alterations induced by glutamate antagonists in tumor cells consisted of reduced membrane ruffling and pseudopodial protrusions. Furthermore, glutamate antagonists decreased motility and invasive growth of tumor cells. These findings suggest anticancer potential of glutamate antagonists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The target of rapamycin (Tor) proteins sense nutrients and control transcription and translation relevant to cell growth. Treating cells with the immunosuppressant rapamycin leads to the intracellular formation of an Fpr1p-rapamycin-Tor ternary complex that in turn leads to translational down-regulation. A more rapid effect is a rich transcriptional response resembling that when cells are shifted from high- to low-quality carbon or nitrogen sources. This transcriptional response is partly mediated by the nutrient-sensitive transcription factors GLN3 and NIL1 (also named GAT1). Here, we show that these GATA-type transcription factors control transcriptional responses that mediate translation by several means. Four observations highlight upstream roles of GATA-type transcription factors in translation. In their absence, processes caused by rapamycin or poor nutrients are diminished: translation repression, eIF4G protein loss, transcriptional down-regulation of proteins involved in translation, and RNA polymerase I/III activity repression. The Tor proteins preferentially use Gln3p or Nil1p to down-regulate translation in response to low-quality nitrogen or carbon, respectively. Functional consideration of the genes regulated by Gln3p or Nil1p reveals the logic of this differential regulation. Besides integrating control of transcription and translation, these transcription factors constitute branches downstream of the multichannel Tor proteins that can be selectively modulated in response to distinct (carbon- and nitrogen-based) nutrient signals from the environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In animal cell lysates the multiprotein heat-shock protein 90 (hsp90)-based chaperone complexes consist of hsp70, hsp40, and p60. These complexes act to convert steroid hormone receptors to their steroid-binding state by assembling them into heterocomplexes with hsp90, p23, and one of several immunophilins. Wheat germ lysate also contains a hsp90-based chaperone system that can assemble the glucocorticoid receptor into a functional heterocomplex with hsp90. However, only two components of the heterocomplex-assembly system, hsp90 and hsp70, have thus far been identified. Recently, purified mammalian p23 preadsorbed with JJ3 antibody-protein A-Sepharose pellets was used to isolate a mammalian p23-wheat hsp90 heterocomplex from wheat germ lysate (J.K. Owens-Grillo, L.F. Stancato, K. Hoffmann, W.B. Pratt, and P. Krishna [1996] Biochemistry 35: 15249–15255). This heterocomplex was found to contain an immunophilin(s) of the FK506-binding class, as judged by binding of the radiolabeled immunosuppressant drug [3H]FK506 to the immune pellets in a specific manner. In the present study we identified the immunophilin components of this heterocomplex as FKBP73 and FKBP77, the two recently described high-molecular-weight FKBPs of wheat. In addition, we present evidence that the two FKBPs bind hsp90 via tetratricopeptide repeat domains. Our results demonstrate that binding of immunophilins to hsp90 via tetratricopeptide repeat domains is a conserved protein interaction in plants. Conservation of this protein-to-protein interaction in both plant and animal cells suggests that it is important for the biological action of the high-molecular-weight immunophilins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunophilins are intracellular receptors for the immunosuppressants cyclosporin A, FK506, and rapamycin. In addition to their use in organ transplantation, these natural products have been used to investigate signaling pathways in yeast, plant, and mammalian cells. We have recently described the identification of an immunosuppressant-sensitive signaling pathway in and the purification of several immunophilins from Vicia faba plants. We now report the molecular characterization of a 15 kDa FK506- and rapamycin-binding protein from V. faba (VfFKBP15). The amino acid sequence deduced from the cDNA starts with a signal peptide of 22 hydrophobic amino acids. The core region of VfFKBP15 is most similar to yeast and mammalian FKBP13 localized in the endoplasmic reticulum (ER). In addition, VfFKBP15 has a carboxyl-terminal sequence that is ended with SSEL, a putative ER retention signal. These findings suggest that VfFKBP15 is a functional homolog of FKBP13 from other organisms. Interestingly, two distinct cDNAs corresponding to two isoforms of FKBP15 have been cloned from Arabidopsis and also identified from rice data base, suggesting that pFKBP15 (plant FKBP15) is encoded by a small gene family in plants. This adds to the diversity of plant FKBP members even with the same subcellular localization and is in contrast with the situation in mammalian and yeast systems in which only one FKBP13 gene has been found. Like the mammalian and yeast FKBP13, the recombinant VfFKBP15 protein has rotamase activity that is inhibited by both FK506 and rapamycin with a Ki value of 30 nM and 0.9 nM, respectively, illustrating that VfFKBP15 binds rapamycin in preference over FK506. The mRNA of VfFKBP15 is ubiquitously expressed in various plant tissues including leaves, stems, and roots, consistent with the ER localization of the protein. Levels of VfFKBP15 mRNA are elevated by heat shock, suggesting a possible role for this FKBP member under stress conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceramide, a product of sphingomyelin turn-over, has been proposed as a novel lipid second messenger with specific roles in mediating antiproliferative responses including apoptosis and cell cycle arrest. In this study, we examine the relationship between the ceramide-mediated pathway of growth suppression and the bcl-2 protooncogene. In ALL-697 leukemia cells, the addition of the chemotherapeutic agent vincristine resulted in a time-dependent growth suppression characterized by marked apoptosis. The effects of vincristine on cell death were preceded by a prolonged and sustained accumulation of endogenous ceramide levels reaching -10.4 pmol ceramide/nmol phospholipids at 12 hr following the addition of vincristine--an increase of 220% over vehicle-treated cells. Overexpression of bcl-2 resulted in near total protection of cell death in response to vincristine. However, the ceramide response to vincristine was not modulated by overexpression of bcl-2, indicating that bcl-2 does not interfere with ceramide formation. Overexpression of bcl-2 prevented apoptosis in response to ceramide, suggesting that bcl-2 acts at a point downstream of ceramide. On the other hand, bcl-2 did not interfere with the ability of ceramide to activate the retinoblastoma gene product or to induce cell cycle arrest, suggesting that the effects of ceramide on cell cycle arrest can be dissociated from the effects on apoptosis. These studies suggest that ceramide and bcl-2 partake in a common pathway of cell regulation. The results also cast ceramide as a gauge of cell injury rather than an "executor" of cell death with clearly dissociable biological outcomes of its action depending on downstream factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has previously been argued that the repressor of protein synthesis initiation factor 4E, 4E-BP1, is a direct in vivo target of p42mapk. However, the immunosuppressant rapamycin blocks serum-induced 4E-BP1 phosphorylation and, in parallel, p70s6k activation, with no apparent effect on p42mapk activation. Consistent with this finding, the kinetics of serum-induced 4E-BP1 phosphorylation closely follow those of p70s6k activation rather than those of p42mapk. More striking, insulin, which does not induce p42mapk activation in human 293 cells or Swiss mouse 3T3 cells, induces 4E-BP1 phosphorylation and p70s6k activation in both cell types. Anisomycin, which, like insulin, does not activate p42mapk, promotes a small parallel increase in 4E-BP1 phosphorylation and p70s6k activation. The insulin effect on 4E-BP1 phosphorylation and p70s6k activation in both cell types is blocked by SQ20006, wortmannin, and rapamycin. These three inhibitors have no effect on p42mapk activation induced by phorbol 12-tetradecanoate 13-acetate, though wortmannin partially suppresses both the p70s6k response and the 4E-BP1 response. Finally, in porcine aortic endothelial cells stably transfected with either the wild-type platelet-derived growth factor receptor or a mutant receptor bearing the double point mutation 740F/751F, p42mapk activation in response to platelet-derived growth factor is unimpaired, but increased 4E-BP1 phosphorylation is ablated, as previously reported for p70s6k. The data presented here demonstrate that 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pp70/85-kDa S6 kinases, collectively referred to as pp70S6k, are thought to participate in transit through the G1 phase of the cell cycle. pp70S6k regulates the phosphorylation of the 40S ribosomal protein S6 and the transcription factor CREM tau. pp70S6k is regulated by serine/threonine phosphorylation, and although 1-phosphatidylinositol 3-kinase and phospholipase C have been implicated as upstream regulators, the mechanism of activation and identity of the upstream pp70S6k kinases remain unknown. To improve our understanding of how this mitogen-stimulated protein kinase is regulated by growth factors and the immunosuppressant rapamycin, we have initiated a structure/function analysis of pp70S6k. Our results indicate that both the N and C termini participate in the complex regulation of pp70S6k activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The type 1 angiotensin II (AT1) receptor is well characterized but the type 2 (AT2) receptor remains an enigma. We tested the hypothesis that the AT2 receptor can modulate the growth of vascular smooth muscle cells by transfecting an AT2 receptor expression vector into the balloon-injured rat carotid artery and observed that overexpression of the AT2 receptor attenuated neointimal formation. In cultured smooth muscle cells, AT2 receptor transfection reduced proliferation and inhibited mitogen-activated protein kinase activity. Furthermore, we demonstrated that the AT2 receptor mediated the developmentally regulated decrease in aortic DNA synthesis at the latter stages of gestation. These results suggest that the AT2 receptor exerts an antiproliferative effect, counteracting the growth action of AT1 receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Total glycans from the cell layer and the culture medium of human vascular smooth muscle cells (VSMC) that had been cultivated in the presence of platelet-derived growth factor (PDGF) were isolated and purified by gel filtration after Pronase and DNase digestion and alkaliborohydride treatment. Measurements of the content of neutral hexoses and uronic acids revealed that PDGF stimulates total glycan synthesis by proliferating VSMC in a linear fashion from 24 h to 72 h of incubation. In contrast, total glycan synthesis by human fibroblasts, epithelial cells, or endothelial cells was not affected by PDGF, indicating cell-type specificity. Chemical, biochemical, and enzymological characterization of the total glycans synthesized by VSMC showed that PDGF stimulates the secretion of a 340-kDa glycan molecule in a time-dependent manner from 24 h to 72 h. This molecule is highly acidic, shares a common structure with hyaluronic acid, and exhibits a potent antiproliferative activity on VSMC. These results suggest that VSMC in response to PDGF are capable of controlling their own growth and migration by the synthesis of a specific form of hyaluronic acid with antiproliferative potency, which may be involved in the regulation of the local inflammatory responses associated with atherosclerosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclophilins are a family of ubiquitous proteins that are the intracellular target of the immunosuppressant drug cyclosporin A. Although cyclophilins catalyze peptidylprolyl cis-trans isomerization in vitro, it has remained open whether they also perform this function in vivo. Here we show that Cpr3p, a cyclophilin in the matrix of yeast mitochondria, accelerates the refolding of a fusion protein that was synthesized in a reticulocyte lysate and imported into the matrix of isolated yeast mitochondria. The fusion protein consisted of the matrix-targeting sequence of subunit 9 of F1F0-ATPase fused to mouse dihydrofolate reductase. Refolding of the dihydrofolate reductase moiety in the matrix was monitored by acquisition of resistance to proteinase K. The rate of refolding was reduced by a factor of 2-6 by 2.5 microM cyclosporin A. This reduced rate of folding was also observed with mitochondria lacking Cpr3p. In these mitochondria, protein folding was insensitive to cyclosporin A. The rate of protein import was not affected by cyclosporin A or by deletion of Cpr3p.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paradoxically, nitric oxide (NO) has been found to exhibit cytotoxic, antiproliferative, or cytoprotective activity under different conditions. We have utilized Salmonella mutants deficient in antioxidant defenses or peptide transport to gain insights into NO actions. Comparison of three NO donor compounds reveals distinct and independent cellular responses associated with specific redox forms of NO. The peroxynitrite (OONO-) generator 3-morpholinosydnonimine hydrochloride mediates oxygen-dependent Salmonella killing, whereas S-nitrosoglutathione (GSNO) causes oxygen-independent cytostasis, and the NO. donor diethylenetriamine-nitric oxide adduct has no antibacterial activity. GSNO has the greatest activity for stationary cells, a characteristic relevant to latent or intracellular pathogens. Moreover, the cytostatic activity of GSNO may best correlate with antiproliferative or antimicrobial effects of NO, which are unassociated with overt cell injury. dpp mutants defective in active dipeptide transport are resistant to GSNO, implicating heterolytic NO+ transfer rather than homolytic NO. release in the mechanism of cytostasis. This transport system may provide a specific pathway for GSNO-mediated signaling in biological systems. The redox state and associated carrier molecules are critical determinants of NO activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transforming growth factor beta s (TGF-beta s) are a group of multifunctional growth factors which inhibit cell cycle progression in many cell types. The TGF-beta-induced cell cycle arrest has been partially attributed to the regulatory effects of TGF-beta on both the levels and the activities of the G1 cyclins and their kinase partners. The activities of these kinases are negatively regulated by a number of small proteins, p21 (WAF1, Cip1), p27Kip1, p16, and p15INK4B, that physically associate with cyclins, cyclin-dependent kinases, or cyclin-Cdk complexes. p21 has been previously shown to be transcriptionally induced by DNA damage through p53 as a mediator. We demonstrate that TGF-beta also causes a rapid transcriptional induction of p21, suggesting that p21 can respond to both intracellular and extracellular signals for cell cycle arrest. In contrast to DNA damage, however, induction of p21 by TGF-beta is not dependent on wild-type p53. The cell line studied in these experiments, HaCaT, contains two mutant alleles of p53, which are unable to activate transcription from the p21 promoter when overexpressed. In addition, TGF-beta and p53 act through distinct elements in the p21 promoter. Taken together, these findings suggest that TGF-beta can induce p21 through a p53-independent pathway. Previous findings have implicated p27Kip1 and p15INK2B as effectors mediating the TGF-beta growth inhibitory effect. These results demonstrate that a single extracellular antiproliferative signal, TGF-beta, can act through multiple signaling pathways to elicit a growth arrest response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the influence of interferons alpha, beta, and gamma (IFN-alpha, -beta, and -gamma) on the production of basic fibroblast growth factor (bFGF) by human renal carcinoma cells. The human renal carcinoma cell metastatic line SN12PM6 was established in culture from a lung metastasis and SN12PM6-resistant cells were selected in vitro for resistance to the antiproliferative effects of IFN-alpha or IFN-beta. IFN-alpha and IFN-beta, but not IFN-gamma, down-regulated the expression of bFGF at the mRNA and protein levels by a mechanism independent of their antiproliferative effects. Down-regulation of bFGF required a long exposure (> 4 days) of cells to low concentrations (> 10 units/ml) of IFN-alpha or IFN-beta. The withdrawal of IFN-alpha or IFN-beta from the medium permitted SN12PM6-resistant cells to resume production of bFGF. The incubation of human bladder, prostate, colon, and breast carcinoma cells with noncytostatic concentrations of IFN-alpha or IFN-beta also produced down-regulation of bFGF production.