965 resultados para angiotensin blood level
Resumo:
Introduction. This study addressed the role of the local renin-angiotensin system (RAS) in the left ventriular hypertropy (LVH) induced by swimming training using pharmacological blockade. Materials and methods. Female Wistar rats treated with enalapril maleate (60 mg.kg(-1).d(-1), n = 38), losartan (20 mg.kg(-1).d(-1), n = 36) or high salt diet (1% NaCl, n = 38) were trained by two protocols (T1: 60-min swimming session, 5 days per week for 10 weeks and T2: the same T1 protocol until the 8(th) week, then 9(th) week they trained twice a day and 10(th) week they trained three times a day). Salt loading prevented activation of the systemic RAS. Haemodynamic parameters, soleus citrate synthase (SCS) activity and LVH (left ventricular/body weight ratio, mg/g) were evaluated. Results. Resting heart rate decreased in all trained groups. SCS activity increased 41% and 106% in T1 and T2 groups, respectively. LVH was 20% and 30% in T1 and T2 groups, respectively. Enalapril prevented 39% of the LVH in T2 group (p < 0.05). Losartan prevented 41% in T1 and 50% in T2 (P < 0.05) of the LVH in trained groups. Plasma renin activity (PRA) was inhibited in all salt groups and it was increased in T2 group. Conclusions. These data provide evidence that the physiological LVH induced by swimming training is regulated by local RAS independent from the systemic, because the hypertrophic response was maintained even when PRA was inhibited by chronic salt loading. However, other systems can contribute to this process.
Resumo:
The aim of this study was to evaluate the arterial and venous blood flow in women who underwent upper limb axillary dissection surgery for the treatment of breast cancer. Sixty women were divided into two groups: group 1 (G1)-30 women who underwent breast surgery with axillary dissection level II or III (55.6 +/- A 8.6 years); group 2 (G2)-control, 30 women with no breast cancer (57.4 +/- A 7.0 years). Blood flow profile was evaluated by a continuous wave ultrasound Doppler device (Nicolet Vascular Versalab SE(A (R))) with an 8 MHz probe. Axillary, brachial arteries and veins, arm circumference, volumes, and the ankle-brachial index (ABI) were examined. Wilcoxon test and Mann-Whitney tests were applied to analyze blood flow velocity intra-group and between G1 and G2, respectively. The G1 results showed no lymphedema and no peripheral arterial disease (ABI > 0.9). Moreover, the mean blood flow velocity of the vessels ipsilateral to the surgery was significantly higher than the contralateral ones for all vessels examined (P < 0.05). The mean velocity of blood flow of the vessels contralateral to surgery was significantly higher than the axillary artery in G2 (P < 0.05). It can be concluded that women who underwent axillary dissection due to breast cancer showed probable stenosis in the arterial and venous axillary and brachial vessels of the upper limb ipsilateral to the surgery, confirmed by the increase of blood flow velocity, and such obstruction might affect the limb contralateral to the operation site.
Resumo:
Angiotensin (Ang) I-converting enzyme (ACE) is involved in the control of blood pressure by catalyzing the conversion of Ang I into the vasoconstrictor Ang II and degrading the vasodilator peptide bradykinin. Human ACE also functions as a signal transduction molecule, and the binding of ACE substrates or its inhibitors initiates a series of events. In this study, we examined whether Ang II could bind to ACE generating calcium signaling. Chinese hamster ovary cells transfected with an ACE expression vector reveal that Ang II is able to bind with high affinity to ACE in the absence of the Ang II type 1 and type 2 receptors and to activate intracellular signaling pathways, such as inositol 1,4,5-trisphosphate and calcium. These effects could be blocked by the ACE inhibitor, lisinopril. Calcium mobilization was specific for Ang II, because other ACE substrates or products, namely Ang 1-7, bradykinin, bradykinin 1-5, and N-acetyl-seryl-aspartyl-lysyl-proline, did not trigger this signaling pathway. Moreover, in Tm5, a mouse melanoma cell line endogenously expressing ACE but not Ang II type 1 or type 2 receptors, Ang II increased intracellular calcium and reactive oxygen species. In conclusion, we describe for the first time that Ang II can interact with ACE and evoke calcium and other signaling molecules in cells expressing only ACE. These findings uncover a new mechanism of Ang II action and have implications for the understanding of the renin-Ang system. (Hypertension. 2011;57:965-972.) . Online Data Supplement
Resumo:
The RAS (renin angiotensin system) is classically involved in BP (blood pressure) regulation and water electrolyte balance, and in the central nervous system it has been mostly associated with homoeostatic processes, such as thirst, hormone secretion and thermoregulation. Epilepsies are chronic neurological disorders characterized by recurrent epileptic seizures that affect 1-3% of the world`s population, and the most commonly used anticonvulsants are described to be effective in approx. 70% of the population with this neurological alteration. Using a rat model of epilepsy, we found that components of the RAS, namely ACE (angiotensin-converting enzyme) and the AT(1) receptor (angiotensin II type I receptor) are up-regulated in the brain (2.6- and 8.2-fold respectively) following repetitive seizures. Subsequently, epileptic animals were treated with clinically used doses of enalapril, an ACE inhibitor, and losartan, an AT(1) receptor blocker, leading to a significant decrease in seizure severities. These results suggest that centrally acting drugs that target the RAS deserve further investigation as possible anticonvulsant agents and may represent an additional strategy in the management of epileptic patients.
Resumo:
Becari C, Teixeira FR, Oliveira EB, Salgado MC. Angiotensin-converting enzyme inhibition augments the expression of rat elastase- 2, an angiotensin II-forming enzyme. Am J Physiol Heart Circ Physiol 301: H565-H570, 2011. First published May 20, 2011; doi:10.1152/ajpheart.00534.2010.-Mounting evidence suggest that tissue levels of angiotensin (ANG) II are maintained in animals submitted to chronic angiotensin-converting enzyme (ACE) inhibitor treatment. We examined the expression levels of transcripts for elastase-2, a chymostatin-sensitive serine protease identified as the alternative pathway for ANG II generation from ANG I in the rat vascular tissue and the relative role of ACE-dependent and -independent pathways in generating ANG II in the rat isolated carotid artery rings of spontaneously hypertensive rats (SHR) and Wistar normotensive rats (WNR) treated with enalapril for 7 days. Enalapril treatment decreased blood pressure of SHR only and resulted in significantly more elastase-2 mRNA expression in carotid artery of both enalapril-treated WNR and SHR. Captopril induced a comparable rightward shift of concentration-response curves to ANG I in vehicle and enalapril-treated rats, although this effect was of lesser magnitude in SHR group. Chymostatin induced a rightward shift of the dose response to ANG I in vehicle-treated and a decrease in maximal effect of 22% in enalapril-treated WNR group. Maximal response induced by ANG I was remarkably reduced by chymostatin in enalapril-treated SHR carotid artery (by 80%) compared with controls (by 23%). Our data show that chronic ACE inhibition was associated with augmented functional role of non-ACE pathway in generating ANG II and increased elastase-2 gene expression, suggesting that this protease may contribute as an alternative pathway for ANG II generation when ACE is inhibited in the rat vascular tissue.
Resumo:
Hemophilia B is a genetic disease of the coagulation system that affects one in 30,000 males worldwide. Recombinant human Factor IX (rhFIX) has been used for hemophilia B treatment, but the amount of active protein generated by these systems is inefficient, resulting in a high-cost production of rhFIX. In this study, we developed an alternative for rhFIX production. We used a retrovirus system to obtain two recombinant cell lines. We first tested rhFIX production in the human embryonic kidney 293 cells (293). Next, we tested a hepatic cell line (HepG2) because FIX is primarily expressed in the liver. Our results reveal that intracellular rhFIX expression was more efficient in HepG2/rhFIX (46%) than in 293/rhFIX (21%). The activated partial thromboplastin time test showed that HepG2/rhFIX expressed biologically active rhFIX 1.5 times higher than 293/rhFIX (P = 0.016). Recovery of rhFIX from the HepG2 by reversed-phase chromatography was straightforward. We found that rhFIX has a pharmacokinetic profile similar to that of FIX purified from human plasma when tested in hemophilic B model. HepG2/rhFIX cell line produced the highest levels of rhFIX, representing an efficient in vitro expression system. This work opens up the possibility of significantly reducing the costs of rhFIX production, with implications for expanding hemophilia B treatment in developing countries.
Resumo:
Background: There is only limited knowledge on how the quantification of valvular regurgitation by color Doppler is affected by changing blood viscosity. This study was designed to evaluate the effect of changing blood viscosity on the vena contracta width using an in vitro model of valvular insufficiency capable of providing ample variation in the rate and stroke volume. Methods: We constructed a pulsatile flow model filled with human blood at varying hematocrit (15%, 35%, and 55%) and corresponding blood viscosity (blood/water viscosity: 2.6, 4.8, 9.1) levels in which jets were driven through a known orifice (7 mm(2)) into a 110 mL compliant receiving chamber (compliance: 2.2 mL/mmHg) by a pulsatile pump. In addition, we used variable pump stroke volumes (5, 7.5, and 10 mL) and rates (40, 60, and 80 ppm). Vena contracta region was imaged using a 3.5 MHz transducer. Pressure and volume in the flow model were kept constant during each experimental condition, as well as ultrasound settings. Results: Blood viscosity variation in the experimental range did not induce significant changes in vena contracta dimensions. Also, vena contracta width did not change from normal to low hematocrit and viscosity levels. A very modest increase only in vena contracta dimension was observed at very high level of blood viscosity when hematocrit was set to 55% . Pump rate, in the evaluated range, did not influence vena contracta width. These results in controlled experimental settings suggest that the vena contracta is an accurate quantitative method for quantifying valvular regurgitation even when this condition is associated with anemia, a frequent finding in patients with valvular heart disease.
Resumo:
Genistein produces antihypertensive and beneficial cardiovascular effects, although the mechanisms for these effects are not known. We examined whether genistein inhibits the in vivo responses to angiotensin I or enhances the responses to bradykinin in anaesthetized rats as a result of angiotensin-converting enzyme inhibition. We have also studied the in vitro effects produced by genistein on the angiotensin-converting enzyme activity. We measured the changes in systemic arterial pressure induced by angiotensin I in doses of 0.03 to 10 mu g/kg, by angiotensin II in doses of 0.01 to 3 mu g/kg, and to bradykinin in doses of 0.03 to 10 mu g/kg in anaesthetized rats pretreated with vehicle (controls), or a single i.v. dose of genistein 25 mg/kg, or daily genistein 25 mg/kg i.v for two days, or a single i.v. dose of captopril 2 mg/kg. Plasma angiotensin-converting enzyme activity was determined in controls and genistein-treated rats using a fluorometric method. The effects of genistein (3-300 mu mol/1) on in vitro angiotensin-converting enzyme activity were assessed by adding genistein to plasma samples and measuring angiotensin-converting enzyme activity. We found significant lower angiotensin-converting enzyme activity in plasma samples from rats pretreated with genistein compared with those found in the Control group (77.7 +/- 8.1 his-leu nmol/min/ml and 108.7 +/- 8.4 his-leu nmol/min/ml, respectively; P=0.01). The incubation of genistein with plasma samples showed that genistein decreased the angiotensin-converting enzyme activity in plasma in a concentration-dependent manner (P<0.01). These findings indicate that genistein inhibits the angiotensin-converting enzyme in vivo and in vitro and may explain, at least in part, the antihypertensive and beneficial vascular effects produced by genistein. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We examined the correlation between results obtained from the in vivo Draize test for ocular irritation and in vitro results obtained from the sheep red blood cell (RBC) haemolytic assay, which assesses haemolysis and protein denaturation in erythrocytes, induced by cosmetic products. We sought to validate the haemolytic assay as a preliminary test for identifying highly-irritative products, and also to evaluate the in vitro test as alternative assay for replacement of the in vivo test. In vitro and in vivo analyses were carried out on 19 cosmetic products, in order to correlate the lesions in the ocular structures with three in vitro parameters: (i) the extent of haemolysis (H50); (ii) the protein denaturation index (131); and (iii) the H50/DI ratio, which reflects the irritation potential (IP). There was significant correlation between maximum average scores (MAS) and the parameters determined in vitro (r = 0.752-0.764). These results indicate that the RBC assay is a useful and rapid test for use as a screening method to assess the IP of cosmetic products, and for predicting the IP value with a high level of concordance (94.7%). The assay showed high sensitivity and specificity rates of 91.6% and 100%, respectively.
Resumo:
Purpose: To quantitatively evaluate changes induced by the application of a femoral blood-pressure cuff (BPC) on run-off magnetic resonance angiography (MRA). which is a method generally previously proposed to reduce venous contamination in the leg. Materials and Methods: This study was Health Insurance Portability and Accountability Act (HIPAA)- and Institutional Review Board (IRB)-compliant, We used time-resolved gradient-echo gadolinium (Gd)-enhanced MRA to measure BPC effects on arterial, venous, and soft-tissue enhancement. Seven healthy volunteers (six men) were studied with the BPC applied at the mid-femoral level unilaterally using a 1.5T MR system after intravenous injection of Gd-BOPTA. Different statistical tools were used such as the Wilcoxon signed rank test and a cubic smoothing spline fit. Results: We found that BPC application induces delayed venous filling (as previously described), but also induces significant decreases in arterial inflow, arterial enhancement, vascular-soft tissue contrast, and delayed peak enhancement (which have not been previously measured). Conclusion: The potential benefits from using a BPC for run-off MRA must be balanced against the potential pitfalls, elucidated by our findings.
Resumo:
Background. The live attenuated yellow fever (YF) vaccines have been available for decades and are considered highly effective and one of the safest vaccines worldwide. Methods. The impact of YF-17DD-antigens recall on cytokine profiles of YF-17DD-vaccinated children were characterized using short-term cultures of whole blood samples and single-cell flow cytometry. This study enrolled seroconverters and nonseroconverters after primovaccination (PV-PRNT(+) and PV-PRNT(-)), seroconverters after revaccination (RV-PRNT(+)), and unvaccinated volunteers (UV-PRNT(-)). Results. The analysis demonstrated in the PV-PRNT(+) group a balanced involvement of pro-inflammatory/regulatory adaptive immunity with a prominent participation of innate immunity pro-inflammatory events (IL-12(+) and TNF-alpha(+) NEU and MON). Using the PV-PRNT(+) cytokine signature as a reference profile, PV-PRNT(+) presented a striking lack of innate immunity proinflammatory response along with an increased adaptive regulatory profile (IL-4(+) CD4(+) T cells and IL-10(+) and IL-5(+) CD8(+) T cells). Conversely, the RV-PRNT(+) shifted the overall cytokine signatures toward an innate immunity pro-inflammatory profile and restored the adaptive regulatory response. Conclusions. The data demonstrated that the overall cytokine signature was associated with the levels of PRNT antibodies with a balanced innate/adaptive immunity with proinflammatory/regulatory profile as the hallmark of PV-PRNT(MEDIUM+), whereas a polarized regulatory response was observed in PV-PRNT(-) and a prominent proinflammatory signature was the characteristic of PV-PRNT(HIGH+).
Resumo:
Background: The protective effect of carvedilol on multiple organ damage induced by angiotensin II (Ang II) remains unclear. The aim of this study was to evaluate the protective effect of carvedilol on the heart, liver, and kidney in rats infused with Ang II. Material/Methods: Wistar rats were randomly distributed into three groups: control (no treatment), continuously infused with Ang II (150 eta g/min for 72 hr), and treated with Ang II + carvedilol (90 mg/kg/d). Histological sections of the myocardium, kidney, and liver were analyzed for the presence of necrosis. Results: Ang II induced arterial hypertension which was not affected by carvedilol treatment (tail-cuff blood pressures, control: 125 +/- 13.6, Ang II: 163 +/- 27.3, Ang II + CV: 178 +/- 39.8 mmHg, p<0.05). Also, there were perivascular inflammation and necrosis in the myocardium, kidney, and hepatocytes necrosis around the terminal vein. Carvedilol treatment fully prevented damage to the heart and kidney and attenuated liver lesions induced by the Ang II infusion. Conclusions: The protective effect of carvedilol on perivascular damage induced by Ang II infusion depended on the target organ. The prevention of heart damage occurred independently of the antihypertensive effects of carvedilol.
Resumo:
Background Microalbuminuria and hypertension have long been associated with a guarded prognosis in human patients with a variety of diseases. In veterinary medicine, tests for microalbuminuria have been used for detecting early kidney damage, but there is little information regarding its association with high blood pressure in dogs with chronic kidney disease (CKD). Objective The objective of this study was to evaluate albuminuria and its association with arterial hypertension in dogs with CKD. Methods Urinary albumin:creatinine (UAC) ratio, urinary protein:creatinine (UPC) ratio, and systolic blood pressure were determined in 39 clinically healthy dogs and 40 dogs with CKD. Results UAC in dogs with CKD (range, 0.002-7.99; median, 0.38) was statistically different from that of control dogs (range, 0.0005-0.01; median, 0.002). Microalbuminuria (UAC 0.03-0.3) and macroalbuminuria (UAC > 0.3) were detected in 32.5% and 50% of dogs with CKD, respectively. Sixty percent (24/40) of dogs with CKD had systolic pressure >= 180 mmHg; in these dogs, UAC ratio (range, 0.006-7.99; median, 1.72) was significantly higher than in dogs with CKD and systolic pressure < 180 mmHg (range, 0.002-4.83; median, 0.10). Of hypertensive dogs with CKD, those with UPC > 1.0 usually had macroalbuminuria, those with UPC 0.5-1.0 usually had microalbuminuria, and those with UPC < 0.5 usually lacked albuminuria. Conclusions UAC ratio was higher in hypertensive than in normotensive dogs with CKD. Tests designed to detect microalbuminuria may be useful for hypertensive dogs with CKD and a UPC < 1.0 to detect the onset and magnitude of albuminuria. Once macroalbuminuria is overt, the UPC ratio itself can be used for the same purpose.
Resumo:
Structural vascular changes in two-kidney, one-clip (2K-1C) hypertension may result from increased matrix metalloproteinase (MMP)-2 activity. MMP-2 activation is regulated by other MMPs, including transmembrane-MMPs, and by tissue inhibitors of MMPs (TIMPs). We have investigated the localization of MMP-2, -9, -14, and TIMPs 1-4 in hypertensive aortas and measured their levels by zymography/Western blotting and immunohistochemistry. Gelatinolytic activity was assayed in tissues by in situ zymography. Sham-operated and 2K-1C hypertensive rats were treated with doxycycline (or vehicle) for 8 weeks, and the systolic blood pressure was monitored weekly. Doxycycline attenuated 2K-1C hypertension (165 +/- 11.7 mmHg versus 213 +/- 7.9 mm Hg in hypertensive controls, P<0.01), and completely prevented increase in the thicknesses of the media and the intima in 2K-1C animals (P<0.01). Increased amounts of MMP-2, -9, and -14 were found in hypertensive aortas, as well as enhanced gelatinolytic activity. A gradient in the localization of MMP-2, -9, and -14 was found, with increased amounts detected in the intima, at sites with higher gelatinolytic activity. Doxycycline attenuated hypertension induced increases in all the 3 investigated MMPs in both the media and the intima (all P<0.05). but it did not change the amounts of TIMPs 1-4 (P>0.05). Therefore, an imbalance between increased amounts of MMPs at the tissue level without a corresponding increase in the quantities of TIMPs, particularly in the intima and inner media layers, appears to account for the increased proteolytic activity found in 2K-1C hypertension-induced maladaptive vascular remodeling. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The adverse effects of environmental lead exposure on the mental development of young children are well established. There is no safe level of blood lead below which children are not affected. Recent research expands our understanding of the impact of lead exposure continuing into later childhood, as well as its effects on children's behaviour. However, social and other environmental factors also contribute to variance in measures of developmental and behavioural outcomes. Lead is associated with only modest effects on children's development, but is a potentially modifiable risk factor. As environmental exposure to lead declines for the whole population, continued specific attention is needed for children living in industrial areas.