952 resultados para aerobic exercise
Resumo:
PURPOSE: Aerobic capacity and respiratory function may be compromised in obesity, but few studies have been done in highly obese bariatric candidates. In a prospective study, these variables were documented in the preoperative period, aiming to define possible physiologic limitations in a apparently healthy and asymptomatic population. METHOD: Forty-six consecutively enrolled adults (age 39.6 ± 8.4 years, 87.0% females, body mass index /BMI 49.6 ± 6.3 kg/m² ) were analyzed. Ventilatory variables were investigated by automated spirometry, aerobic capacity was estimated by a modified Bruce test in an ergometric treadmill, and body composition was determined by bioimpedance analysis. RESULTS: Total fat was greatly increased (46.4 ± 4.6% of body weight) and body water reduced (47.3 ± 4.6 % body weight), as expected for such obese group. Spirometric findings including forced vital capacity of 3.3 ± 0.8 L and forced expiratory volume-1 second of 2.6 ± 0.6 L were usually acceptable for age and gender, but mild restrictive pulmonary insufficiency was diagnosed in 20.9%. Aerobic capacity was more markedly diminished, as reflected by very modest maximal time (4.5 ± 1.1 min) and distance (322 ±142 m) along with proportionally elevated maximal oxygen consumption (23.4 ± 9.5 mL/kg/min) achieved by these subjects during test exercise. CONCLUSIONS: 1) Cardiopulmonary evaluation was feasible and well-tolerated in this severely obese population; 2) Mean spirometric variables were not diminished in this study, but part of the population displayed mild restrictive changes; 3) Exercise tolerance was very negatively influenced by obesity, resulting in reduced endurance and excessive metabolic cost for the treadmill run; 4) More attention to fitness and aerobic capacity is recommended for seriously obese bariatric candidates;
Resumo:
Background:Autonomic dysfunction (AD) is highly prevalent in hemodialysis (HD) patients and has been implicated in their increased risk of cardiovascular mortality.Objective:To correlate heart rate variability (HRV) during exercise treadmill test (ETT) with the values obtained when measuring functional aerobic impairment (FAI) in HD patients and controls.Methods:Cross-sectional study involving HD patients and a control group. Clinical examination, blood sampling, transthoracic echocardiogram, 24-hour Holter, and ETT were performed. A symptom-limited ramp treadmill protocol with active recovery was employed. Heart rate variability was evaluated in time domain at exercise and recovery periods.Results:Forty-one HD patients and 41 controls concluded the study. HD patients had higher FAI and lower HRV than controls (p<0.001 for both). A correlation was found between exercise HRV (SDNN) and FAI in both groups. This association was independent of age, sex, smoking, body mass index, diabetes, and clonidine or beta-blocker use, but not of hemoglobin levels.Conclusion:No association was found between FAI and HRV on 24-hour Holter or at the recovery period of ETT. Of note, exercise HRV was inversely correlated with FAI in HD patients and controls. (Arq Bras Cardiol. 2015; [online]. ahead print, PP.0-0)
Resumo:
BACKGROUND: The debate about a possible relationship between aerobic fitness and motor skills with cognitive development in children has recently re-emerged, because of the decrease in children's aerobic fitness and the concomitant pressure of schools to enhance cognitive performance. As the literature in young children is scarce, we examined the cross-sectional and longitudinal relationship of aerobic fitness and motor skills with spatial working memory and attention in preschool children. METHODS: Data from 245 ethnically diverse preschool children (mean age: 5.2 (0.6) years, girls: 49.4%) analyzed at baseline and 9 months later. Assessments included aerobic fitness (20 m shuttle run) and motor skills with agility (obstacle course) and dynamic balance (balance beam). Cognitive parameters included spatial working memory (IDS) and attention (KHV-VK). All analyses were adjusted for age, sex, BMI, migration status, parental education, native language and linguistic region. Longitudinal analyses were additionally adjusted for the respective baseline value. RESULTS: In the cross-sectional analysis, aerobic fitness was associated with better attention (r=0.16, p=0.03). A shorter time in the agility test was independently associated with a better performance both in working memory (r=-0.17, p=0.01) and in attention (r=-0.20, p=0.01). In the longitudinal analyses, baseline aerobic fitness was independently related to improvements in attention (r=0.16, p=0.03), while baseline dynamic balance was associated with improvements in working memory (r=0.15, p=0.04). CONCLUSIONS: In young children, higher baseline aerobic fitness and motor skills were related to a better spatial working memory and/or attention at baseline, and to some extent also to their future improvements over the following 9 months. TRIAL REGISTRATION: clinicaltrials.gov NCT00674544.
Resumo:
PURPOSE: Both acute hypoxia and physical exercise are known to increase oxidative stress. This randomized prospective trial investigated whether the addition of moderate exercise can alter oxidative stress induced by continuous hypoxic exposure. METHODS: Fourteen male participants were confined to 10-d continuous normobaric hypoxia (FIO2 = 0.139 +/- 0.003, PIO2 = 88.2 +/- 0.6 mm Hg, approximately 4000-m simulated altitude) either with (HCE, n = 8, two training sessions per day at 50% of hypoxic maximal aerobic power) or without exercise (HCS, n = 6). Plasma levels of oxidative stress markers (advanced oxidation protein products [AOPP], nitrotyrosine, and malondialdehyde), antioxidant markers (ferric-reducing antioxidant power, superoxide dismutase, glutathione peroxidase, and catalase), nitric oxide end-products, and erythropoietin were measured before the exposure (Pre), after the first 24 h of exposure (D1), after the exposure (Post) and after the 24-h reoxygenation (Post + 1). In addition, graded exercise test in hypoxia was performed before and after the protocol. RESULTS: Maximal aerobic power increased after the protocol in HCE only (+6.8%, P < 0.05). Compared with baseline, AOPP was higher at Post + 1 (+28%, P < 0.05) and nitrotyrosine at Post (+81%, P < 0.05) in HCS only. Superoxide dismutase (+30%, P < 0.05) and catalase (+53%, P < 0.05) increased at Post in HCE only. Higher levels of ferric-reducing antioxidant power (+41%, P < 0.05) at Post and lower levels of AOPP (-47%, P < 0.01) at Post + 1 were measured in HCE versus HCS. Glutathione peroxidase (+31%, P < 0.01) increased in both groups at Post + 1. Similar erythropoietin kinetics was noted in both groups with an increase at D1 (+143%, P < 0.01), a return to baseline at Post, and a decrease at Post + 1 (-56%, P < 0.05). CONCLUSIONS: These data provide evidence that 2 h of moderate daily exercise training can attenuate the oxidative stress induced by continuous hypoxic exposure.
Resumo:
Discrepancies appear in studies comparing fat oxidation between men and women. Therefore, this study aimed to quantitatively describe and compare whole-body fat oxidation kinetics between genders during exercise, using a sinusoidal (SIN) model. Twelve men and 11 women matched for age, body mass index, and aerobic fitness (maximal oxygen uptake and maximal power output per kilogram of fat-free mass (FFM)) performed submaximal incremental tests (Incr) with 5-min stages and a 7.5% maximal power output increment on a cycle ergometer. Fat oxidation rates were determined using indirect calorimetry, and plotted as a function of exercise intensity. The SIN model, which includes 3 independent variables (dilatation, symmetry, translation) that account for the main quantitative characteristics of kinetics, was used to mathematically describe fat oxidation kinetics and to determine the intensity (Fatmax) eliciting the maximal fat oxidation (MFO). During Incr, women exhibited greater fat oxidation rates from 35% to 85% maximal oxygen uptake, MFO (6.6 ± 0.9 vs. 4.5 ± 0.3 mg·kg FFM-1·min-1), and Fatmax (58.1% ± 1.9% vs. 50.0% ± 2.7% maximal oxygen uptake) than men (p < 0.05). While men and women showed similar global shapes of fat oxidation kinetics in terms of dilatation and symmetry (p > 0.05), the fat oxidation curve tended to be shifted toward higher exercise intensities in women (rightward translation, p = 0.08). These results support the idea that women have a greater reliance on fat oxidation than men during submaximal exercise, but also indicate that this greater fat oxidation is shifted toward higher exercise intensities in women than in men.
Resumo:
Acute exercise increases energy expenditure (EE) during exercise and post-exercise recovery [excess post-exercise oxygen consumption (EPOC)] and therefore may be recommended as part of the multidisciplinary management of obesity. Moreover, chronic exercise (training) effectively promotes an increase in insulin sensitivity, which seems to be associated with increased fat oxidation rates (FORs). The main purpose of this thesis is to investigate 1) FORs and extra-muscular factors (hormones and plasma metabolites) that regulate fat metabolism during acute and chronic exercise; and 2) EPOC during acute post-exercise recovery in obese and severely obese men (class II and III). In the first study, we showed that obese and severely obese men present a lower exercise intensity (Fatmax) eliciting maximal fat oxidation and a lower reliance on fat oxidation at high, but not at low and moderate, exercise intensities compared to lean men. This was most likely related to an impaired muscular capacity to oxidize non-esterified fatty acids (NEFA) rather than decreased plasma NEFA availability or a change in the hormonal milieu during exercise. In the second study, we developed an accurate maximal incremental test to correctly and simultaneously evaluate aerobic fitness and fat oxidation kinetics during exercise in this population. This test may be used for the prescription of an appropriate exercise training intensity. In the third study, we demonstrated that only 2 wk of exercise training [continuous training at Fatmax and adapted high-intensity interval training (HIIT)], matched with respect to mechanical work, may be effective to improve aerobic fitness, FORs during exercise and insulin sensitivity, which suggest that FORs might be rapidly improved and that adapted HIIT is feasible in this population. The increased FORs concomitant with the lack of changes in lipolysis during exercise suggest an improvement in the mismatching between NEFA availability and oxidation, highlighting the importance of muscular (oxidative capacity) rather than extra-muscular (hormones and plasma metabolites) factors in the regulation of fat metabolism after a training program. In the fourth study, we observed a positive correlation between EE during exercise and EPOC, suggesting that a chronic increase in the volume or intensity of exercise may increase EE during exercise and during recovery. This may have an impact in weight management in obesity. In conclusion, these findings might have practical implications for exercise training prescriptions in order to improve the therapeutic approaches in obesity and severe obesity. -- L'exercice aigu augmente la dépense énergétique (DE) pendant l'exercice et la récupération post-exercice [excès de consommation d'oxygène post-exercise (EPOC)] et peut être utilisé dans la gestion multidisciplinaire de l'obésité. Quant à l'exercice chronique (entraînement), il est efficace pour augmenter la sensibilité à l'insuline, ce qui semble être associé à une amélioration du débit d'oxydation lipidique (DOL). Le but de cette thèse est d'étudier 1) le DOL et les facteurs extra-musculaires (hormones et métabolites plasmatiques) qui régulent le métabolisme lipidique pendant l'exercice aigu et chronique et 2) l'EPOC lors de la récupération aiguë post-exercice chez des hommes obèses et sévèrement obèses (classe II et III). Dans la première étude nous avons montré que les hommes obèses et sévèrement obèses présentent une plus basse intensité d'exercice (Fatmax) correspondant au débit d'oxydation lipidique maximale et un plus bas DOL à hautes, mais pas à faibles et modérées, intensités d'exercice comparé aux sujets normo-poids, ce qui est probablement lié à une incapacité musculaire à oxyder les acides gras non-estérifiés (AGNE) plutôt qu'à une diminution de leur disponibilité ou à un changement du milieu hormonal pendant l'exercice. Dans la deuxième étude nous avons développé un test maximal incrémental pour évaluer simultanément l'aptitude physique aérobie et la cinétique d'oxydation des lipides pendant l'exercice chez cette population. Dans la troisième étude nous avons montré que seulement deux semaines d'entraînement (continu à Fatmax et intermittent à haute intensité), appariés par la charge de travail, sont efficaces pour améliorer l'aptitude physique aérobie, le DOL pendant l'exercice et la sensibilité à l'insuline, ce qui suggère que le DOL peut être rapidement amélioré chez cette population. Ceci, en absence de changements de la lipolyse pendant l'exercice, suggère une amélioration de la balance entre la disponibilité et l'oxydation des AGNE, ce qui souligne l'importance des facteurs musculaires (capacité oxydative) plutôt que extra-musculaires (hormones et métabolites plasmatiques) dans la régulation du métabolisme lipidique après un entraînement. Dans la quatrième étude nous avons observé une corrélation positive entre la DE pendant l'exercice et l'EPOC, ce qui suggère qu'une augmentation chronique du volume ou de l'intensité de l'exercice pourrait augmenter la DE lors de l'exercice et lors de la récupération post-exercice. Ceci pourrait avoir un impact sur la gestion du poids chez cette population. En conclusion, ces résultats pourraient avoir des implications pratiques lors de la prescription des entraînements dans le but d'améliorer les approches thérapeutiques de l'obésité et de l'obésité sévère.
Resumo:
Master athletes are often considered to represent the ideal rate of decline of aerobic function; however, most of the studies interested in active elderly people are often limited to people younger than 75. We aimed to determine the physiological adaptations and aerobic fitness in a selected European population of active octogenarians during maximal and submaximal exercise tests. Aerobic capacity was measured during maximal incremental tests on treadmill (TR) and cycle-ergometer (CE) and functional capacity during a 6-minute walk test (6-MWT) in 17 subjects aged 81.2 +/- 0.8 years. Pulmonary gas exchange and heart rate (HR) were continuously measured during the different exercise tests. Maximal oxygen consumption (V.O (2max)) on TR and CE was significantly higher than predicted values (TR: 28.7 +/- 1.2 vs. 17 +/- 0.5 ml . kg (-1) . min (-1); CE: 23 +/- 1.2 vs. 16 +/- 0.6 ml . kg (-1) . min (-1) for measured and predicted values respectively). V.O (2max) and HR (max), as well as V.O (2) and HR at the ventilatory threshold (V.O (2)T (V.E) and HR T (V.E)) were significantly higher on TR than on CE (HR (max): 144 +/- 4 vs. 138 +/- 4 bpm; V.O (2)T (V.E): 22.5 +/- 0.8 vs. 17.7 +/- 0.9 ml . kg (-1) . min (-1) for TR and CE respectively). V.O (2)T (V.E) and HR T (V.E) on TR were equivalent to V.O (2) and HR measured during the 6-MWT. HR T (V.E) on TR and mean HR during the 6-MWT were strongly correlated (R = 0.82, p < 0.01). Maintenance of regular physical activity provides high aerobic fitness, in octogenarians, as was shown by the higher values of our subjects in comparison to predicted values. Moreover, the close relation between the intensity developed at T (V.E) on TR and 6-MWT could support the idea that a walk test is a submaximal test performed at high intensity that could provide a basis for exercise prescription in an individualized manner in active elderly people.
Resumo:
Objective:We investigated to what extent changes in metabolic rate and composition of weight loss explained the less-than-expected weight loss in obese men and women during a diet-plus-exercise intervention.Design:In all, 16 obese men and women (41±9 years; body mass index (BMI) 39±6 kg m(-2)) were investigated in energy balance before, after and twice during a 12-week very-low-energy diet(565-650 kcal per day) plus exercise (aerobic plus resistance training) intervention. The relative energy deficit (EDef) from baseline requirements was severe (74%-87%). Body composition was measured by deuterium dilution and dual energy X-ray absorptiometry, and resting metabolic rate (RMR) was measured by indirect calorimetry. Fat mass (FM) and fat-free mass (FFM) were converted into energy equivalents using constants 9.45 kcal per g FM and 1.13 kcal per g FFM. Predicted weight loss was calculated from the EDef using the '7700 kcal kg(-1) rule'.Results:Changes in weight (-18.6±5.0 kg), FM (-15.5±4.3 kg) and FFM (-3.1±1.9 kg) did not differ between genders. Measured weight loss was on average 67% of the predicted value, but ranged from 39% to 94%. Relative EDef was correlated with the decrease in RMR (R=0.70, P<0.01), and the decrease in RMR correlated with the difference between actual and expected weight loss (R=0.51, P<0.01). Changes in metabolic rate explained on average 67% of the less-than-expected weight loss, and variability in the proportion of weight lost as FM accounted for a further 5%. On average, after adjustment for changes in metabolic rate and body composition of weight lost, actual weight loss reached 90% of the predicted values.Conclusion:Although weight loss was 33% lower than predicted at baseline from standard energy equivalents, the majority of this differential was explained by physiological variables. Although lower-than-expected weight loss is often attributed to incomplete adherence to prescribed interventions, the influence of baseline calculation errors and metabolic downregulation should not be discounted.
Resumo:
PURPOSE: The aim of this study was to examine whether lipid oxidation predominates during 3 h of postexercise recovery in high-intensity interval exercise as compared with moderate-intensity continuous exercise on a cycle ergometer in fit young men (n = 12; 24.6 +/- 0.6 yr). METHODS: The energy substrate partitioning was evaluated during and after high-intensity submaximal interval exercise (INT, 1-min intervals at 80% of maximal aerobic power output [Wmax] with an intervening 1 min of active recovery at 40% Wmax) and 60-min moderate-intensity continuous exercise at 45% of maximal oxygen uptake (C45%) as well as a time-matched resting control trial (CON). Exercise bouts were matched for mechanical work output. RESULTS: During exercise, a significantly greater contribution of CHO and a lower contribution of lipid to energy expenditure were found in INT (512.7 +/- 26.6 and 41.0 +/- 14.0 kcal, respectively) than in C45% (406.3 +/- 21.2 and 170.3 +/- 24.0 kcal, respectively; P < 0.001) despite similar overall energy expenditure in both exercise trials (P = 0.13). During recovery, there were no significant differences between INT and C45% in substrate turnover and oxidation (P > 0.05). On the other hand, the mean contribution of lipids to energy yield was significantly higher after exercise trials (C45% = 61.3 +/- 4.2 kcal; INT = 66.7 +/- 4.7 kcal) than after CON (51.5 +/- 3.4 kcal; P < 0.05). CONCLUSIONS: These findings show that lipid oxidation during postexercise recovery was increased by a similar amount on two isoenergetic exercise bouts of different forms and intensities compared with the time-matched no-exercise control trial.
Resumo:
This study aimed to characterise both the [Formula: see text] kinetics within constant heavy-intensity swimming exercise, and to assess the relationships between [Formula: see text] kinetics and other parameters of aerobic fitness, in well-trained swimmers. On separate days, 21 male swimmers completed: (1) an incremental swimming test to determine their maximal oxygen uptake [Formula: see text], first ventilatory threshold (VT), and the velocity associated with [Formula: see text] [Formula: see text] and (2) two square-wave transitions from rest to heavy-intensity exercise, to determine their [Formula: see text] kinetics. All the tests involved breath-by-breath analysis of freestyle swimming using a swimming snorkel. [Formula: see text] kinetics was modelled with two exponential functions. The mean values for the incremental test were 56.0 ± 6.0 ml min(-1) kg(-1), 1.45 ± 0.08 m s(-1); and 42.1 ± 5.7 ml min(-1) kg(-1) for [Formula: see text], [Formula: see text] and VT, respectively. For the square-wave transition, the time constant of the primary phase (τ(p)) averaged 17.3 ± 5.4 s and the relevant slow component (A'(sc)) averaged 4.8 ± 2.9 ml min(-1) kg(-1) [representing 8.9% of the end-exercise [Formula: see text] (%A'(sc))]. τ(p) was correlated with [Formula: see text] (r = -0.55, P = 0.01), but not with either [Formula: see text] (r = 0.05, ns) or VT (r = 0.14, ns). The %A'(sc) did not correlate with either [Formula: see text] (r = -0.14, ns) or [Formula: see text] (r = 0.06, ns), but was inversely related with VT (r = -0.61, P < 0.01). This study was the first to describe the [Formula: see text] kinetics in heavy-intensity swimming using specific swimming exercise and appropriate methods. As has been demonstrated in cycling, faster [Formula: see text] kinetics allow higher aerobic power outputs to be attained. The slow component seems to be reduced in swimmers with higher ventilatory thresholds.
Resumo:
Summary : With regard to exercise metabolism, lactate was long considered as a dead-end waste product responsible for muscle fatigue and a limiting factor for motor performance. However, a large body of evidence clearly indicates that lactate is an energy efficient metabolite able to link the glycolytic pathway with aerobic metabolism and has endocrine-like actions, rather than to be a dead-end waste product. Lactate metabolism is also known to be quickly upregulated by regular endurance training and is thought to be related to exercise performance. However, to what extent its modulation can increase exercise performance in already endurance-trained subjects is unknown. The general hypothesis of this work was therefore that increasing either lactate metabolic clearance rate or lactate availability could, in turn, increase endurance performance. The first study (Study I) aimed at increasing the lactate clearance rate by means of assumed interaction effects of endurance training and hypoxia on lactate metabolism and endurance performance. Although this study did not demonstrate any interaction of training and hypoxia on both lactate metabolism and endurance performance, a significant deleterious effect of endurance training in hypoxia was shown on glucose homeostasis. The methods used to determine lactate kinetics during exercise exhibited some limitations, and the second study did delineate some of the issues raised (Study 2). The third study (Study 3) investigated the metabolic and performance effects of increasing plasma lactate production and availability during prolonged exercise in the fed state. A nutritional intervention was used for this purpose: part of glucose feedings ingested during the control condition was substituted by fructose. The results of this study showed a significant increase of lactate turnover rate, quantified the metabolic fate of fructose; and demonstrated a significant decrease of lipid oxidation and glycogen breakdown. In contrast, endurance performance appeared to be unmodified by this dietary intervention, being at odds with recent reports. Altogether the results of this thesis suggest that in endurance athletes the relationship between endurance performance and lactate turnover rate remains unclear. Nonetheless, the result of the present study raises questions and opens perspectives on the rationale of using hypoxia as a therapeutic aid for the treatment of insulin resistance. Moreover, the results of the second study open perspectives on the role of lactate as an intermediate metabolite and its modulatory effects on substrate metabolism during exercise. Additionally it is suggested that the simple nutritional intervention used in the third study can be of interest in the investigation on the aforementioned roles of lactate. Résumé : Lorsque le lactate est évoqué en rapport avec l'exercice, il est souvent considéré comme un déchet métabolique responsable de l'acidose métabolique, de la fatigue musculaire ou encore comme un facteur limitant de la performance. Or la littérature montre clairement que le lactate se révèle être plutôt un métabolite utilisé efficacement par de nombreux tissus par les voies oxydatives et, ainsi, il peut être considéré comme un lien entre le métabolisme glycolytique et le métabolisme oxydatif. De plus on lui prête des propriétés endocrines. Il est connu que l'entraînement d'endurance accroît rapidement le métabolisme du lactate, et il est suggéré que la performance d'endurance est liée à son métabolisme. Toutefois la relation entre le taux de renouvellement du lactate et la performance d'endurance est peu claire, et, de même, de quelle manière la modulation de son métabolisme peut influencer cette dernière. Le but de cette thèse était en conséquence d'investiguer de quelle manière et à quel degré l'augmentation du métabolisme du lactate, par l'augmentation de sa clearance et de son turnover, pouvait à son tour améliorer la performance d'endurance de sujets entraînés. L'objectif de la première étude a été d'augmenter la clearance du lactate par le biais d'un entraînement en conditions hypoxiques chez des cyclistes d'endurance. Basé sur la littérature scientifique existante, on a fait l'hypothèse que l'entraînement d'endurance et l'hypoxie exerceraient un effet synergétique sur le métabolisme du lactate et sur la performance, ce qui permettrait de montrer des relations entre performance et métabolisme du lactate. Les résultats de cette étude n'ont montré aucun effet synergique sur la performance ou le métabolisme du lactate. Toutefois, un effet délétère sur le métabolisme du glucose a été démontré. Quelques limitations de la méthode employée pour la mesure du métabolisme du lactate ont été soulevées, et partiellement résolues dans la seconde étude de ce travail, qui avait pour but d'évaluer la sensibilité du modèle pharmacodynamique utilisé pour le calcul du turnover du lactate. La troisième étude a investigué l'effet d'une augmentation de la lactatémie sur le métabolisme des substrats et sur la performance par une intervention nutritionnelle substituant une partie de glucose ingéré pendant l'exercice par du fructose. Les résultats montrent que les composants dynamiques du métabolisme du lactate sont significativement augmentés en présence de fructose, et que les oxydations de graisse et de glycogène sont significativement diminuées. Toutefois aucun effet sur la performance n'a été démontré. Les résultats de ces études montrent que la relation entre le métabolisme du lactate et la performance reste peu claire. Les résultats délétères de la première étude laissent envisager des pistes de travail, étant donné que l'entraînement en hypoxie est considéré comme outil thérapeutique dans le traitement de pathologies liées à la résistance à l'insuline. De plus les résultats de la troisième étude ouvrent des perspectives de travail quant au rôle du lactate comme intermédiaire métabolique durant l'exercice ainsi que sur ses effets directs sur le métabolisme. Ils suggèrent de plus que la manipulation nutritionnelle simple qui a été utilisée se révèle être un outil prometteur dans l'étude des rôles et effets métaboliques que peut revêtir le lactate durant l'exercice.
Resumo:
The maximal aerobic capacity while running and cycling was measured in 22 prepubertal children (mean age +/- SD 9.5 +/- 0.8 years): 14 obese (47.3 +/- 10 kg) and 8 non-obese (31.1 +/- 6.1 kg). Oxygen consumption (VO2) and carbon dioxide production were measured by an open circuit method. Steady state VO2 was determined at different levels of exercise up to the maximal power on the cycloergometer (92 W in obese and 77 W in non-obese subjects) and up to the maximal running speed on the treadmill at a 2% slope (8.3 km/h in obese and 9.0 km/h in lean children). Expressed in absolute values, the VO2max in obese children was significantly higher than in controls (1.55 +/- 0.29 l/min versus 1.23 +/- 0.22 l/min, p < 0.05) for the treadmill test and comparable in the two groups (1.4 +/- 0.2 l/min versus 1.16 +/- 0.2 l/min, ns) for the cycloergometer test. When VO2max was expressed per kg fat free mass, the difference between the two groups disappeared for both tests. These data suggest that obese children had no limitation of maximal aerobic power. Therefore, the magnitude of the workload prescribed when a physical activity program is intended for the therapy of childhood obesity, it should be designed to increase caloric output rather than to improve cardiorespiratory fitness.
Resumo:
This study aimed to compare two different maximal incremental tests with different time durations [a maximal incremental ramp test with a short time duration (8-12 min) (STest) and a maximal incremental test with a longer time duration (20-25 min) (LTest)] to investigate whether an LTest accurately assesses aerobic fitness in class II and III obese men. Twenty obese men (BMI≥35 kg.m-2) without secondary pathologies (mean±SE; 36.7±1.9 yr; 41.8±0.7 kg*m-2) completed an STest (warm-up: 40 W; increment: 20 W*min-1) and an LTest [warm-up: 20% of the peak power output (PPO) reached during the STest; increment: 10% PPO every 5 min until 70% PPO was reached or until the respiratory exchange ratio reached 1.0, followed by 15 W.min-1 until exhaustion] on a cycle-ergometer to assess the peak oxygen uptake [Formula: see text] and peak heart rate (HRpeak) of each test. There were no significant differences in [Formula: see text] (STest: 3.1±0.1 L*min-1; LTest: 3.0±0.1 L*min-1) and HRpeak (STest: 174±4 bpm; LTest: 173±4 bpm) between the two tests. Bland-Altman plot analyses showed good agreement and Pearson product-moment and intra-class correlation coefficients showed a strong correlation between [Formula: see text] (r=0.81 for both; p≤0.001) and HRpeak (r=0.95 for both; p≤0.001) during both tests. [Formula: see text] and HRpeak assessments were not compromised by test duration in class II and III obese men. Therefore, we suggest that the LTest is a feasible test that accurately assesses aerobic fitness and may allow for the exercise intensity prescription and individualization that will lead to improved therapeutic approaches in treating obesity and severe obesity.
Resumo:
Introduction Discrepancies appear in studies comparing fat oxidation between men and women during exercise (1). Therefore, this study aimed to quantitatively describe and compare whole body fat oxidation kinetics between genders during exercise using a sinusoidal model (SIN) (2). Methods Twelve men and 11 women matched for age, body mass index (23.4±0.6 kg.m-2 and 21.5±0.8 kg.m-2, respectively) and aerobic fitness [maximal oxygen uptake ( ) (58.5±1.6 mL.kg FFM-1.min-1 and 55.3±2.0 mL.kg FFM-1.min-1, respectively) and power output ( ) per kilogram of fat-free mass (FFM)] performed submaximal incremental tests (Incr) with 5-min stages and 7.5% increment on a cycle ergometer. Respiratory and HR values were averaged over the last 2 minutes of each stage. All female study participants were eumenorrheic, reported regular menstrual cycles (28.6 ± 0.8 days) and were not taking oral contraceptives (OC) or other forms of exogenous ovarian hormones. Women were studied in the early follicular phase (FP) of their menstrual cycle (between days 3 and 8, where day 1 is the first day of menses). Fat oxidation rates were determined using indirect calorimetry and plotted as a function of exercise intensity. The SIN model (2), which includes three independent variables (dilatation, symmetry, translation), was used to mathematically describe fat oxidation kinetics and to determine the intensity (Fatmax) eliciting the maximal fat oxidation (MFO). Results During Incr, women exhibited greater fat oxidation rates from 35 to 85% , MFO (6.6 ± 0.9 vs. 4.5 ± 0.3 mgkg FFM-1min-1) and Fatmax (58.1 ± 1.9 vs. 50.0 ± 2.7% ) (P<0.05) than men. While men and women showed similar global shapes of fat oxidation kinetics in terms of dilatation and symmetry (P>0.05), the fat oxidation curve tended to be shifted towards higher exercise intensities in women (rightward translation, P=0.08). Conclusion These results showed that women, eumenorrheic, not taking OC and tested in FP, have a greater reliance on fat oxidation than men during submaximal exercise, but they also indicate that this greater fat oxidation is shifted towards higher exercise intensities in women compared with men. References 1. Blaak E. Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care 4: 499-502, 2001. 2. Cheneviere X, Malatesta D, Peters EM, and Borrani F. A mathematical model to describe fat oxidation kinetics during graded exercise. Med Sci Sports Exerc 41: 1615-1625, 2009.
Resumo:
OBJECTIVES: Recombinant erythropoietin has a strong impact on aerobic power and is therefore one of the most potent doping agents in endurance sports. The anti-doping control of this synthetic hormone relies on the detection, in the urine, of its isoelectric pattern, which differs from that of the corresponding natural hormone, the latter being typically more acidic than the former. However, a small number of natural urinary patterns, referred to as "atypical patterns," are less acidic than the dominant form. Based on anecdotal evidence, the occurrence of such patterns seems to be related to particular strenuous exercises. This study aimed to demonstrate this relation using a strenuous exercise protocol. DESIGN: Seven athletes took part in a training protocol including a series of supramaximal short-duration exercises. Urine and blood samples were collected throughout the protocols. SETTINGS: World Cycling Center, Aigle, Switzerland, and research laboratories. PARTICIPANTS: Seven top-level athletes (cyclists) were involved in this study. MAIN OUTCOME MEASURES: Erythropoietin (EPO) isoelectric patterns were obtained by submitting blood and urine samples to isoelectric focusing. Additional protein dosages were performed. RESULTS: Supramaximal short-duration exercises induced the transformation of typical urinary natural EPO patterns into atypical ones. None of the obtained atypical patterns fulfilled the 3 criteria mandatory for reporting an adverse analytical finding. Serum EPO patterns were not affected by the exercises that caused the transformation of urinary patterns. CONCLUSION: An exercise-induced transient renal dysfunction is proposed as a hypothetic explanation for these observations that rely on parallel investigations of proteinuria in the same samples.