955 resultados para adsorbed
Resumo:
This is the Proposed Environmental Quality Standards (EQS) for Nonylphenol in Water produced by the Environment Agency in 1997. The report reviews the properties and uses of Nonylphenol, its fate, behaviour and reported concentrations in the environment, and critically assesses available data on its toxicity and bioaccumulation. The information is used to derive EQSs for the protection of fresh and saltwater life as well as for water abstracted to potable supply.Nonylphenol (NP) is used extensively in the production of other substances such as non-ionic ethoxylate surfactants. It is through the incomplete anaerobic biodegradation of these surfactants that most nonylphenol reaches the aquatic environment in effluents, e.g. from sewage treatment works and certain manufacturing operations. It was explicitly stated by the Environment Agency that the EQS was to be derived for NP and not Nonylphenol ethoxylates. However, since NP is unlikely to be present in the aquatic environment in the absence of other nonylphenol ethoxylate (NPE) degradation by-products, the toxicity, fate and behaviour of some of these (i.e. nonylphenol mono- and diethoxylates (NP1EO and NP2EO), mono- and di-nonylphenoxy carboxylic acids (NP1EC and NP2EC) have also been considered in this report. In the aquatic environment and during sewage treatment, NPEs are rapidly degraded to NP under aerobic conditions. NP may then be either fully mineralised or may be adsorbed to sediments. Since NP cannot be biodegraded under anaerobic conditions it can accumulate in sediments to high concentrations.
Resumo:
Inibidores de corrosão são substâncias que quando adicionadas a um meio agressivo, diminuem ou previnem a reação de oxidação de um metal com este meio e/ou as reações de redução de espécies presentes no meio. Para a inibição da corrosão de cobre e suas ligas em meios ácidos ou neutros, o inibidor mais empregado é o benzotriazol (BTAH), o qual forma complexos com os íons Cu (I) e Cu (II) na superfície do metal, diminuindo o processo corrosivo. A preocupação com a preservação ambiental e a toxicidade de inibidores de corrosão vem sendo discutida na literatura. Vários estudos têm-se intensificado usando aminoácidos, como proposta para substituição ao BTAH, considerado tóxico. Entre os aminoácidos estudados, dois apresentavam enxofre em suas moléculas (cisteína e metionina) e um outro sem heteroátomo na cadeira lateral (glicina). As concentrações variaram entre 10-2 a 10-4 mol/L e pH da solução entre 7,2 e 8,4. Foram realizadas medidas gravimétricas (ensaios de imersão total) e técnicas eletroquímicas, tais como polarização potenciodinâmica e espectroscopia de impedância eletroquímica. A caracterização morfológica da superfície do substrato após os ensaios de imersão total (743 horas) foi feita por meio de microscopia eletrônica de varredura (MEV), espectroscopia de raios X por dispersão de energia (EDS ou EDX) e difração de raios X (DRX). Embora os resultados com aminoácidos tenham sido sempre muito inferiores àqueles obtidos na presença de BTAH, comportamentos semelhantes em função da concentração dos aminoácidos puderam ser observados pelos diagramas de Nyquist. Contudo, com exceção dos resultados verificados para o meio contendo cisteína 10-2 mol/L, todas as eficiências de inibição para os meios contendo aminoácidos, obtidas pelos ensaios de imersão total, foram negativas, mostrando que o tempo de exposição também pode ser relevante para o desempenho destes inibidores. Entre todos os aminoácidos testados, os meios contendo glicina apresentaram os piores desempenhos anticorrosivos, inclusive acelerando o processo de dissolução anódica do cobre. Esse resultado pode estar relacionado à faixa de pH das soluções testadas e à solubilidade dos complexos de cobre formados com os aminoácidos, mostrando que uma faixa ótima de pH também deve ser assegurada para aprimorar a ação destes aminoácidos como inibidores de corrosão
Resumo:
A transesterificação metílica em meio homogêneo é catalisada por bases, tais como hidróxidos e alcóxidos de sódio ou potássio e se processa em baixa temperatura de reação, mesmo em escala industrial. A utilização de catalisadores formados por sólidos básicos aparece como uma alternativa promissora aos processos homogêneos convencionais, tendo em vista as inúmeras vantagens como a redução da ocorrência das reações indesejáveis de saponificação e redução de custos dos processos pela diminuição do número de operações associadas. Em estudos anteriores realizados pelo grupo, catalisadores a base de Mg/La com diferentes composições químicas (9:1, 1:1 e 1:9) mostraram-se promissores para a obtenção de ésteres metílicos via reação de transesterificação, porém não foi possível fazer uma correlação entre atividade catalítica e as propriedades físico-químicas quando toda a série foi considerada. Assim, a realização de um estudo de caráter fundamental, baseado em reações modelo e uso de moléculas sonda, permite avançar no entendimento das propriedades de superfície destes catalisadores. Portanto, o presente trabalho estuda a reação entre metanol e acetato de etila em catalisadores a base de Mg/La utilizando espectroscopia de reflectância difusa no infravermelho com transformada de Fourier (DRIFTS) acoplada a espectrometria de massas (MS) identificando os intermediários e produtos formados para determinar a rota reacional. As análises de difração de raios X mostram que os precursores são predominantemente compostos por carbonatos hidratados de magnésio (Mg/La 1:1 e 9:1) e de lantânio (Mg/La 1:9). Os perfis de decomposição térmica e difratogramas de raios X obtidos a partir de tratamento térmico in situ indicaram que estes carbonatos se decompõem apenas a partir de 750 C. As análises de Dessorção a Temperatura Programada realizadas com moléculas sonda, metanol e acetato de etila, mostraram a adsorção em maior quantidade do metanol independente da composição química do sólido. A partir dos resultados obtidos por DRIFTS-MS foi proposta uma rota reacional para a reação de transesterificação do acetato de etila e metanol, que ocorre via adsorção do metanol e do acetato de etila na superfície do catalisador, seguida da formação de um intermediário tetraédrico formado pelas moléculas adsorvidas, que sofre um rearranjo formando etanol, acetato de metila, acetona e metano. Simultaneamente, parte do metanol adsorvido como metoxi monodentado é desidrogenado formando formiatos que são dessorvidos na forma de formaldeído e decompostos formando CO2 e H2
Resumo:
Revestimentos funcionais compósitos são um atrativo tecnológico crescente, pois possibilitam a combinação de materiais metálicos, poliméricos ou cerâmicos, resultando em propriedades superiores as dos materiais individuais, sendo por este motivo, largamente aplicados na engenharia de materiais. Na presente dissertação, foram produzidos revestimentos compósitos por eletrodeposição através da codeposição de uma matriz metálica de cobre e de partículas de óxidos de alumínio incorporadas (g - Al2O3 ou AlO(OH)), sobre substratos de aço carbono, a partir de diferentes banhos eletrolíticos. Três etapas foram efetuadas, na primeira realizou-se o estudo da influência do modo de agitação e da presença ou não de ligantes (citrato de sódio 1,00 mol/L) nos teores de cobre e alumina nos revestimentos produzidos. Em seguida foi avaliada a ação de complexantes (citrato de sódio 1,00 mol/L e pirofosfato de potássio 0,90 mol/L) usando polarização potenciodinâmica e voltametria cíclica, em conjunto com microbalança eletroquímica de cristal de quartzo (EQCM) e a posterior produção de revestimentos compósitos a partir de banhos contendo CuSO4 0,02 mol/L + pirofosfato de potássio 0,90 mol/L + 20 g/L de alumina, variando a densidade de corrente aplicada (I), a velocidade de agitação do eletrodo rotatório (A) e o do tempo de agitação prévia (t). Por fim, na terceira etapa, fez-se a substituição de alumina por Boehmita e a produção dos revestimentos a partir de banhos contendo CuSO4 0,02 mol/L + pirofosfato de potássio 0,90 mol/L + 20 g/L de Boehmita, empregando um planejamento composto central, em que os parâmetros citados também foram variados. Os resultados mostraram que a presença de um ligante e a agitação prévia e continuada do eletrólito durante o experimento foram fundamentais para a produção dos revestimentos compósitos. Ensaios de EQCM mostraram que o citrato se adsorveu na superfície do eletrodo de ouro, diferentemente do pirofosfato. Os teores de Boehmita e cobre nos revestimentos produzidos, assim como a morfologia, resistência de polarização e densidade de corrente de corrosão dos revestimentos foram influenciados pelos parâmetros avaliados.
Resumo:
Apesar da importância das estações de tratamento de efluentes industriais (ETEIs) na conservação dos ecossistemas, estas podem ser geradoras de gases com maus odores contendo compostos orgânicos voláteis - COVs. Os maus odores têm sido motivos de protestos e reclamações por parte da população circunvizinha às fontes emissoras. Em virtude da conscientização ambiental, e dos impactos sobre a saúde do homem, o objetivo geral deste trabalho é avaliar a eficiência de um biorreator aeróbio piloto no controle de gases odoríferos emitidos em estação de tratamento de efluentes de indústrias de alimentos. Foi desenvolvido um sistema de difusão de ar odorífero em um reator aeróbio de lodo ativado, hermeticamente fechado, operado no regime de batelada sequencial, durante os dias 14, 21, 23, e 30 do mês de julho.Foram realizadas análises dos parâmetros físico-químicos do lodo ativado utilizado no reator aeróbio piloto, como determinação dos sólidos, DBO5, DQO, OD, pH, temperatura e IVL. A atividade da biomassa do lodo ativado foi avaliada por meio do teste de Respirometria. A eficiência do reator quanto à redução da DQO dos gases foi analisada por meio da absorção dos gases em solução de dicromato de potássio. Para avaliação da mensuração dos odores utilizou-se o método de cromatografia gasosa e espectrometria de massa, quantificando amostras de gases odorantes adsorvidas em tubos de carvão ativado, na entrada e na saída dobiorreator. Os resultados obtidos confirmaram o potencial do sistema de difusão em lodos ativados para o tratamento de gases odoríferos em ETEI, com eficiência de remoção dos COV`s variando de 97,3% a 98,9%.
Resumo:
Antibody orientation and its antigen binding efficiency at interface are of particular interest in many immunoassays and biosensor applications. In this paper, spectroscopic ellipsometry (SE), neutron reflection (NR), and dual polarization interferometry (DPI) have been used to investigate interfacial assembly of the antibody [mouse monoclonal anti-human prostate-specific antigen (anti-hPSA)] at the silicon oxide/water interface and subsequent antigen binding. It was found that the mass density of antibody adsorbed at the interface increased with solution concentration and adsorption time while the antigen binding efficiency showed a steady decline with increasing antibody amount at the interface over the concentration range studied. The amount of antigen bound to the interfacial immobilized antibody reached a maximum when the surface-adsorbed amount of antibody was around 1.5 mg/m(2). This phenomenon is well interpreted by the interfacial structural packing or crowding. NR revealed that the Y-shaped antibody laid flat on the interface at low surface mass density with a thickness around 40 Å, equivalent to the short axial length of the antibody molecule. The loose packing of the antibody within this range resulted in better antigen binding efficiency, while the subsequent increase of surface-adsorbed amount led to the crowding or overlapping of antibody fragments, hence reducing the antigen binding due to the steric hindrance. In situ studies of antigen binding by both NR and DPI demonstrated that the antigen inserted into the antibody layer rather than forming an additional layer on the top. Stability assaying revealed that the antibody immobilized at the silica surface remained stable and active over the monitoring period of 4 months. These results are useful in forming a general understanding of antibody interfacial behavior and particularly relevant to the control of their activity and stability in biosensor development.
Resumo:
Zinc oxide (ZnO) thin films were deposited at high rates ( > 50 nm min-1) using a unique technique known as high target utilisation sputtering (HiTUS). The films obtained possess good crystallographic orientation, low surface roughness, very low stress and excellent piezoelectric properties. We have utilised the films to develop highly sensitive biosensors based on thickness longitudinal mode (TLM) thin film bulk acoustic resonators (FBARs). The FBARs have the fundamental TLM at a frequency near 1.5 GHz and quality factor Q higher than 1,000, which is one of the largest values ever reported for ZnO-based FBARs. Bovine Serum Albumin (BSA) solutions with different concentrations were placed on the top of different sets of identical FBARs and their responses to mass-loading from physically adsorbed protein coatings were investigated. These resonators demonstrated a high sensitivity and thus have a great potential as gravimetric sensors for biomedical applications. © 2011 Inderscience Enterprises Ltd.
Resumo:
Schizothorax zarudnvi, is an endemic fish of east country waters. (Triple lagoons of Hamoon and relevant water resources) that in the world it is reported in this resource specially. This fish named Hamoon mahi is one of the most economically valuable species in this region. Because of the recent years droughts, Hamoon logoon has been drive since 2000. Also, semi-wells (a semi natural resource) were affected drastically by recent drought years and their volume reduced to nearly one third of their real volume and resulted in changing at growth and reproduction physiology process in Schizothorax zanidnyi, brood stocks. Beginning of this project was done from October 2003. It's field studies begun (brood catching) since November 2001 by two methods including entangling gairs and at semi wells of Sistan that (Beach seine) had maximum rate of preparing qualified brood stocks. Broods transferred to Cyprinidea reproduction work shop of Zahak and after taking primary measures they stored in to the edaphic pools. Increasing the success safety factor (coefficient) for artificial reproduction of Sthizothorax zarudnyi , identifying the appropriate tune for Hormonal acceptance (physiological preparation of broods) is needed , so this important work was done regularly by histological studies and GSI measurements since November. Highest GSI rates of females (%80.51) and highest IV stage abundance of sexual maturity (%l 00) were observed an march. On the base of this date, Hormone therapy was done on broods on march. The used hormones are as follows Hypophysis. extraction, GnRHa and Anti Dopamin at the dozes of 3-6 ml, 20-30kg and 10-15 ml per kg body weight respectively and 2-3 times from 11-12-80 they were injected. Injected broods kept in to two circumstances, flow-through (rounded pool) and stagnant systems. In stagnant system 14 and 19 individuals of female and male (Schizothorax zauiulnri) broods, respectively injected in 11th, 15111, 19th, and 24th of march 1380. Non of the injected broods in 11 and 15 and 19th march (in stagnant Condition) answered to Hormone therapy. After final injection broods had general less activity and a few of them died. Mean temperature of brood pond waters (daily) which were injected. Fluctuated between 10-25-13. 63°c but injected broods on 24th march had different characteristics. They had pale color and had few fecundity. In this stage of injection they hadn't any successful vulation. After injection, Mean daily water temperature was 15, 88-17, 54°c. In Flowing system, 13-16 individual of males and females respectively were injected on 15th, 19th, 22th and 23th march. None of injected producers on 15th and 19th march with mean daily water temperature of 10, 25-12°c were prepared for spawning but injected producers on 22nd an 23th march with mean daily water temperature of 13.5-1 rc responded about 75-100 percent. (Schizothorax zarudnyi) brood stocks were prepared for spawning after 353-428 hours/day from final injection. Diameter of obtained eggs (before fertilization) was between 1.9-2.3 min and of fertilized eggs was 3.8mm. Fertilized eggs of (Schizothorax zarudnyi) were hatched after 6-7 days with mean water temperature of 17.08°c. Mean length of on one day larvae was 9.47 mm. Larvae was 9.47 mm. Larvae adsorbed the whole yolk sac after , 5-6 days at 17- 1°c and were prepared for releasing in to edaphic pools. Because of the lack of necessary and complementary facilities in the region , they had to release them in to veniros and growing them for 8 days. At the end of 18th day , 35000 larvae (at first) released into an edaphic pond with a volume of 150m2. After growing them for one moth , mean length and weight of new hatched larvae was 29.41 mm and 1.12►r , respectively. With respect to results of this investigation , artificial reproduction of (Schizothorax zarudnyi) Can be possible at 14-17°C and flowing water with Hormonal treatment. It -s breeding has increased development than other cultural specious in the region. Due to high economical value of this specious in Sistan and ti-s specialization east waters of Iran and having high resistance and proper growth There is a need of it's development and reproduction and culture in fish culture fanns (edaphic ponds• two-purpose pools) at the region and country.
Resumo:
Solidly mounted resonators (SMRs) with a top carbon nanotubes (CNTs) surface coating that doubles as an electrode and as a sensing layer have been fabricated. The influence of the CNTs on the frequency response of the resonators was studied by direct comparison to identical devices with a top metallic electrode. It was found that the CNTs introduced significantly less mass load on the resonators and these devices exhibited a greater quality factor, Q (>2000, compared to ∼1000 for devices with metal electrodes), which increases the gravimetric sensitivity of the devices by allowing the tracking of smaller frequency shifts. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode exhibited a higher frequency change for a given load (∼0.25 MHz cm2 ng-1) compared to that of a metal thin film electrode (∼0.14 MHz cm2 ng-1), due to the lower mass of the CNT electrodes and their higher active surface area compared to that of a thin film metal electrode. It is therefore concluded that the use of CNT electrodes on resonators for their use as gravimetric biosensors is a significant improvement over metallic electrodes that are normally employed. © 2011 Elsevier B.V. All rights reserved.
Resumo:
The specific recognition between monoclonal antibody (anti-human prostate-specific antigen, anti-hPSA) and its antigen (human prostate-specific antigen, hPSA) has promising applications in prostate cancer diagnostics and other biosensor applications. However, because of steric constraints associated with interfacial packing and molecular orientations, the binding efficiency is often very low. In this study, spectroscopic ellipsometry and neutron reflection have been used to investigate how solution pH, salt concentration and surface chemistry affect antibody adsorption and subsequent antigen binding. The adsorbed amount of antibody was found to vary with pH and the maximum adsorption occurred between pH 5 and 6, close to the isoelectric point of the antibody. By contrast, the highest antigen binding efficiency occurred close to the neutral pH. Increasing the ionic strength reduced antibody adsorbed amount at the silica-water interface but had little effect on antigen binding. Further studies of antibody adsorption on hydrophobic C8 (octyltrimethoxysilane) surface and chemical attachment of antibody on (3-mercaptopropyl)trimethoxysilane/4-maleimidobutyric acid N-hydroxysuccinimide ester-modified surface have also been undertaken. It was found that on all surfaces studied, the antibody predominantly adopted the 'flat on' orientation, and antigen-binding capabilities were comparable. The results indicate that antibody immobilization via appropriate physical adsorption can replace elaborate interfacial molecular engineering involving complex covalent attachments.
Resumo:
Protein adsorption plays a crucial role in biomaterial surface science as it is directly linked to the biocompatibility of artificial biomaterial devices. Here, elucidation of protein adsorption mechanism is effected using dual polarization interferometry and a quartz crystal microbalance to characterize lysozyme layer properties on a silica surface at different coverage values. Lysozyme is observed to adsorb from sparse monolayer to multilayer coverage. At low coverage an irreversibly adsorbed layer is formed with slight deformation consistent with side-on orientation. At higher coverage values dynamic re-orientation effects are observed which lead to monolayer surface coverages of 2-3 ng/mm² corresponding to edge-on or/and end-on orientations. These monolayer thickness values ranged between 3 and 4.5 nm with a protein density value of 0.60 g/mL and with 50 wt% solvent mass. Further increase of coverage results formation of a multilayer structure. Using the hydration content and other physical layer properties a tentative model lysozyme adsorption is proposed.
Resumo:
Protein adsorption plays a crucial role in biomaterial surface science as it is directly linked to the biocompatibility of artificial biomaterial devices. Here, elucidation of protein adsorption mechanism is effected using dual polarization interferometry and a quartz crystal microbalance to characterize lysozyme layer properties on a silica surface at different coverage values. Lysozyme is observed to adsorb from sparse monolayer to multilayer coverage. At low coverage an irreversibly adsorbed layer is formed with slight deformation consistent with side-on orientation. At higher coverage values dynamic re-orientation effects are observed which lead to monolayer surface coverages of 2-3 ng/mm2 corresponding to edge-on or/and end-on orientations. These monolayer thickness values ranged between 3 and 4.5 nm with a protein density value of 0.60 g/mL and with 50 wt% solvent mass. Further increase of coverage results formation of a multilayer structure. Using the hydration content and other physical layer properties a tentative model lysozyme adsorption is proposed. © 2012 Elsevier Ltd.
Resumo:
Measurements of particulate matter (PM) from spark ignition (SI) engine exhaust using dilution tunnels will become more prevalent as emission standards are tightened. Hence, a study of the dilution process was undertaken in order to understand how various dilution related parameters affect the accuracy with which PM sizes and concentrations can be determined. A SI and a compression ignition (CI) engine were separately used to examine parameters of the dilution process; the present work discusses the results in the context of SI exhaust dilution. A Scanning Mobility Particle Sizer (SMPS) was used to measure the size distribution, number density, and volume fraction of PM. Temperature measurements in the exhaust pipe and dilution tunnel reveal the degree of mixing between exhaust and dilution air, the effect of flowrate on heat transfer from undiluted and diluted exhaust to the environment, and the minimum permissible dilution ratio for a maximum sample temperature of 52°C. Measurements of PM concentrations as a function of dilution ratio show the competing effects of temperature and particle/vapor concentrations on particle growth dynamics, which result in a range of dilution ratios-from 13 to 18-where the effect of dilution ratio, independent of flowrate, is kept to a minimum. This range of dilution ratios is therefore optimal in order to achieve repeatable PM concentration measurements. Particle dynamics during transit through the tunnel operating at the optimal dilution ratio was found statistically insignificant compared to data scatter. Such small differences in number concentration may be qualitatively representative of particle losses for SI exhaust, but small increases in PM volume fraction during transit through the tunnel may significantly underestimate accretion of mass due to unburned hydrocarbons (HCs) emitted by SI engines. The fraction of SI-derived PM mass due to adsorbed/absorbed vapor, estimated from these data, is consistent with previous chemical analyses of PM. © 1998 Society of Automotive Engineers, Inc.
Resumo:
Graphene is a single layer of covalently bonded carbon atoms, which was discovered only 8 years ago and yet has already attracted intense research and commercial interest. Initial research focused on its remarkable electronic properties, such as the observation of massless Dirac fermions and the half-integer quantum Hall effect. Now graphene is finding application in touch-screen displays, as channels in high-frequency transistors and in graphene-based integrated circuits. The potential for using the unique properties of graphene in terahertz-frequency electronics is particularly exciting; however, initial experiments probing the terahertz-frequency response of graphene are only just emerging. Here we show that the photoconductivity of graphene at terahertz frequencies is dramatically altered by the adsorption of atmospheric gases, such as nitrogen and oxygen. Furthermore, we observe the signature of terahertz stimulated emission from gas-adsorbed graphene. Our findings highlight the importance of environmental conditions on the design and fabrication of high-speed, graphene-based devices.
Resumo:
In this article, we describe a simple method to reversibly tune the wetting properties of vertically aligned carbon nanotube (CNT) arrays. Here, CNT arrays are defined as densely packed multi-walled carbon nanotubes oriented perpendicular to the growth substrate as a result of a growth process by the standard thermal chemical vapor deposition (CVD) technique.(1,2) These CNT arrays are then exposed to vacuum annealing treatment to make them more hydrophobic or to dry oxidation treatment to render them more hydrophilic. The hydrophobic CNT arrays can be turned hydrophilic by exposing them to dry oxidation treatment, while the hydrophilic CNT arrays can be turned hydrophobic by exposing them to vacuum annealing treatment. Using a combination of both treatments, CNT arrays can be repeatedly switched between hydrophilic and hydrophobic.(2) Therefore, such combination show a very high potential in many industrial and consumer applications, including drug delivery system and high power density supercapacitors.(3-5) The key to vary the wettability of CNT arrays is to control the surface concentration of oxygen adsorbates. Basically oxygen adsorbates can be introduced by exposing the CNT arrays to any oxidation treatment. Here we use dry oxidation treatments, such as oxygen plasma and UV/ozone, to functionalize the surface of CNT with oxygenated functional groups. These oxygenated functional groups allow hydrogen bond between the surface of CNT and water molecules to form, rendering the CNT hydrophilic. To turn them hydrophobic, adsorbed oxygen must be removed from the surface of CNT. Here we employ vacuum annealing treatment to induce oxygen desorption process. CNT arrays with extremely low surface concentration of oxygen adsorbates exhibit a superhydrophobic behavior.