965 resultados para Zelarayán, Ricardo
Resumo:
Human infection with a novel low pathogenicity influenza A(H7N9) virus in eastern China has recently raised global public health concerns (1). The geographic sources of infection have yet to be fully clarified, and confirmed human cases from 1 province have not been linked to those from other provinces. While some studies have identified epidemiologic characteristics of subtype H7N9 cases and clinical differences between these cases and cases of highly pathogenic influenza A(H5N1), another avian influenza affecting parts of China (2–4), the spatial epidemiology of human infection with influenza subtypes H7N9 and H5N1 in China has yet to be elucidated. To test the hypothesis of co-distribution of high-risk clusters of both types of infection, we used all available data on human cases in mainland China and investigated the geospatial epidemiologic features...
Resumo:
The mineral sturmanite is a hydrated calcium iron aluminium manganese sulphate tetrahydroxoborate hydroxide of formula Ca6(Fe, Al, Mn)2(SO4)2(B(OH)4)(OH)12•26H2O. We have studied the mineral sturmanite using a number of techniques, including SEM with EPMA and vibrational spectroscopy. Chemical analysis shows a homogeneous phase, composed by Ca, Fe, Mn, S, Al and Si. B is not determined in this EPMA technique. An intense Raman band at 990 cm−1 is assigned to the SO42− symmetric stretching mode. Raman spectroscopy identifies multiple sulphate symmetric stretching modes in line with the three sulphate crystallographically different sites. Raman spectroscopy also identifies a band at 1069 cm−1 which may be attributed to a carbonate symmetric stretching mode, indicating the presence of thaumasite. Infrared spectra display two bands at 1080 and 1107 cm−1 assigned to the SO42− antisymmetric stretching modes. The observation of multiple bands in this ν4 spectral region offers evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 3622 cm−1 is assigned to the OH unit stretching vibration and the broad feature at around 3479 cm−1 to water stretching bands. Infrared spectroscopy shows a set of broad overlapping bands in the OH stretching region. Vibrational spectroscopy enables an assessment of the molecular structure of sturmanite to be made.
Resumo:
We have studied aspect of the molecular structure of the phosphate mineral rimkorolgite from Zheleznyi iron mine, Kovdor massif, Kola Peninsula, Russia, using SEM with EDX and vibrational spectroscopy. Qualitative chemical analysis shows a homogeneous phase, composed by P, Mg, Ba, Mn and Ca. Small amounts of Si were also observed. An intense Raman peak at 975 cm−1 is assigned to the PO43− ν1 symmetric stretching mode. The Raman band at 964 cm−1 is attributed to the HPO42− ν1 symmetric stretching vibration. Raman bands observed at 1016, 1035, 1052, 1073, 1105 and 1135 cm−1 are attributed to the ν3 antisymmetric stretching vibrations of the HPO42− and PO43− units. Complexity in the spectra of the phosphate bending region is observed. The broad Raman band at 3272 cm−1 is assigned to the water stretching vibration. Vibrational spectroscopy enables aspects on the molecular structure of rimkorolgite to be undertaken.
Resumo:
We have studied the mineral analcime using a combination of scanning electron microscopy with energy dispersive spectroscopy and vibrational spectroscopy. The mineral analcime Na2(Al4SiO4O12)·2H2O is a crystalline sodium silicate. Chemical analysis shows the mineral contains a range of elements including Na, Al, Fe2+ and Si. The mineral is characterized by intense Raman bands observed at 1052, 1096 and 1125 cm−1. The infrared bands are broad; nevertheless bands may be resolved at 1006 and 1119 cm−1. These bands are assigned to SiO stretching vibrational modes. Intense Raman band at 484 cm−1 is attributed to OSiO bending modes. Raman bands observed at 2501, 3542, 3558 and 3600 cm−1 are assigned to the stretching vibrations of water. Low intensity infrared bands are noted at 3373, 3529 and 3608 cm−1. The observation of multiple water bands indicate that water is involved in the structure of analcime with differing hydrogen bond strengths. This concept is supported by the number of bands in the water bending region. Vibrational spectroscopy assists with the characterization of the mineral analcime.
Resumo:
We have studied the mineral takedaite Ca3(BO3)2, a borate mineral of calcium using SEM with EDX and vibrational spectroscopy. Chemical analysis shows a homogeneous phase, composed of Ca. Boron was not detected. A very intense Raman band at 1087 cm−1 is assigned to the BO stretching vibration of BO3 units. Additional Raman bands may be due to isotopic splitting. In the infrared spectrum, bands at 1218 cm−1 and at 1163, 1262 and 1295 cm−1 are assigned to the trigonal borate stretching modes. Raman bands at 712 and 715 cm−1 are assigned to the in-plane bending modes of the BO3 units. Vibrational spectroscopy enables aspects of the molecular structure of takedaite to be assessed.
Resumo:
Nowadays, the emergence of resistance to the current available chemotherapeutic drugs by cancer cells makes the development of new agents imperative. The skin secretion of amphibians is a natural rich source of antimicrobial peptides (AMP), and researchers have shown that some of these wide spectrum molecules are also toxic to cancer cells. The aim of this study was to verify a putative anticancer activity of the AMP pentadactylin isolated for the first time from the skin secretion of the frog Leptodactylus labyrinthicus and also to study its cytotoxic mechanism to the murine melanoma cell line B16F10. The results have shown that pentadactylin reduces the cell viability of B16F10 cells in a dose-dependent manner. It was also cytotoxic to normal human fibroblast cells; nevertheless, pentadactylin was more potent in the first case. The studies of action mechanism revealed that pentadactylin causes cell morphology alterations (e.g., round shape and shrinkage morphology), membrane disruption, DNA fragmentation, cell cycle arrest at the S phase, and alteration of mitochondrial membrane potential, suggesting that B16F10 cells die by apoptosis. The exact mechanism that causes reduction of cell viability and cytotoxicity after treatment with pentadactylin is still unknown. In conclusion, as cancer cells become resilient to death, it is worthwhile the discovery of new drugs such as pentadactylin that induces apoptosis.
Resumo:
The mineral pectolite NaCa2Si3O8(OH) is a crystalline sodium calcium silicate which has the potential to be used in plaster boards and in other industrial applications. Raman bands at 974 and 1026 cm−1 are assigned to the SiO stretching vibrations of linked units of Si3O8 units. Raman bands at 974 and 998 cm−1 serve to identify Si3O8 units. The broad Raman band at around 936 cm−1 is attributed to hydroxyl deformation modes. Intense Raman band at 653 cm−1 is assigned to OSiO bending vibration. Intense Raman bands in the 2700–3000 cm−1 spectral range are assigned to OH stretching vibrations of the OH units in pectolite. Infrared spectra are in harmony with the Raman spectra. Raman spectroscopy with complimentary infrared spectroscopy enables the characterisation of the silicate mineral pectolite.
Resumo:
The mineral lomonosovite has been studied using a combination of scanning electron microscopy with energy dispersive X-ray analysis and vibrational spectroscopy. Qualitative chemical analysis gave Si, P, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and Al. The mineral lomonosovite has a formula Na5Ti2(Si2O7)(PO4)O2. Raman bands observed at 909, 925 and 939 cm−1 are associated with phosphate units. Raman bands found at 975, 999, 1070, 1080 and 1084 cm−1 are attributed to siloxane stretching vibrations. The observation of multiple bands in both the phosphate stretching and bending regions supports the concept that the symmetry of the phosphate anion in the structure of lomonosovite is significantly reduced. Infrared spectroscopy identifies bands in the water stretching and bending regions, thus suggesting that water is involved with the structure of lomonosovite either through adsorption on the surface or by bonding to the phosphate units.
Resumo:
The mineral kidwellite, a hydrated hydroxy phosphate of ferric iron and sodium of approximate formula NaFe93+(PO4)6(OH)11⋅3H2O, has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 978 cm−1 and 1014 cm−1. These bands are attributed to the PO43− ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The series of Raman bands at 1034, 1050, 1063, 1082, 1129, 1144 and 1188 cm−1 are attributed to the ν3 antisymmetric stretching bands of the PO43− and HOPO32− units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of kidwellite. The series of Raman bands at 557, 570, 588, 602, 631, 644 and 653 cm−1are assigned to the PO43− ν2 bending modes. The series of Raman bands at 405, 444, 453, 467, 490 and 500 cm−1 are attributed to the PO43− and HOPO32− ν4 bending modes. The spectrum is quite broad but Raman bands may be resolved at 3122, 3231, 3356, 3466 and 3580 cm−1. These bands are assigned to water stretching vibrational modes. The number and position of these bands suggests that water is in different molecular environments with differing hydrogen bond distances. Infrared bands at 3511 and 3359 cm−1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm−1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral kidwellite.
Resumo:
The mineral sulphohalite – Na6(SO4)2FCl is a rare sodium halogen sulphate and occurs associated with evaporitic deposits. Sulphohalite formation is important in saline evaporites and in pipe scales. Sulphohalite is an anhydrous sulphate–halide with an apparent variable anion ratio of formula Na6(SO4)2FCl. Such a formula with oxyanions lends itself to vibrational spectroscopy. The Raman band at 1003 cm−1 is assigned to the (SO4)2− ν1 symmetric stretching mode. Shoulders to this band are found at 997 and 1010 cm−1. The low intensity Raman bands at 1128, 1120 and even 1132 cm−1 are attributed to the (SO4)2− ν3 antisymmetric stretching vibrations. Two symmetric sulphate stretching modes are observed indicating at least at the molecular level the non-equivalence of the sulphate ions in the sulphohalite structure. The Raman bands at 635 and 624 cm−1 are assigned to the ν4 SO42− bending modes. The ν2 (SO4)2− bending modes are observed at 460 and 494 cm−1. The observation of multiple bands supports the concept of a reduction in symmetry of the sulphate anion from Td to C3v or even C2v. No evidence of bands attributable to the halide ions was found.
Resumo:
We have studied the mineral chenevixite from Manto Cuba Mine, San Pedro de Cachiyuyo District, Inca de Oro, Chañaral Province, Atacama Region, Chile, using a combination of scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDX) and vibrational spectroscopy. Qualitative chemical analysis shows a homogeneous composition, with predominance of As, Fe, Al, Cu, Fe and Cu. Minor amounts of Si were also observed. Raman spectroscopy complimented with infrared spectroscopy has been used to assess the molecular structure of the arsenate minerals chenevixite. Characteristic Raman and infrared bands of the (AsO4)3− stretching and bending vibrations are identified and described. The observation of multiple bands in the (AsO4)3− bending region offers support for the loss of symmetry of the arsenate anion in the structure of chenevixite. Raman bands attributable to the OH stretching vibrations of water and hydroxyl units were analysed. Estimates of the hydrogen bond distances were made based upon the OH stretching wavenumbers.
Resumo:
S. japonicum infection is believed to be endemic in 28 of the 80 provinces of the Philippines and the most recent data on schistosomiasis prevalence have shown considerable variability between provinces. In order to increase the efficient allocation of parasitic disease control resources in the country, we aimed to describe the small scale spatial variation in S. japonicum prevalence across the Philippines, quantify the role of the physical environment in driving the spatial variation of S. japonicum, and develop a predictive risk map of S. japonicum infection. Data on S. japonicum infection from 35,754 individuals across the country were geo-located at the barangay level and included in the analysis. The analysis was then stratified geographically for Luzon, the Visayas and Mindanao. Zero-inflated binomial Bayesian geostatistical models of S. japonicum prevalence were developed and diagnostic uncertainty was incorporated. Results of the analysis show that in the three regions, males and individuals aged ≥ 20 years had significantly higher prevalence of S. japonicum compared with females and children <5 years. The role of the environmental variables differed between regions of the Philippines. S. japonicum infection was widespread in the Visayas whereas it was much more focal in Luzon and Mindanao. This analysis revealed significant spatial variation in prevalence of S. japonicum infection in the Philippines. This suggests that a spatially targeted approach to schistosomiasis interventions, including mass drug administration, is warranted. When financially possible, additional schistosomiasis surveys should be prioritized to areas identified to be at high risk, but which were underrepresented in our dataset.
Resumo:
Background: The transmission of soil-transmitted helminths (STHs) is associated with poverty, poor hygiene behaviour, lack of clean water and inadequate waste disposal and sanitation. Periodic administration of benzimidazole drugs is the mainstay for global STH control but it does not prevent re-infection, and is unlikely to interrupt transmission as a stand-alone intervention. Findings: We reported recently on the development and successful testing in Hunan province, PR China, of a health education package to prevent STH infections in Han Chinese primary school students. We have recently commenced a new trial of the package in the ethnically diverse Xishuangbanna autonomous prefecture in Yunnan province and the approach is also being tested in West Africa, with further expansion into the Philippines in 2015. Conclusions: The work in China illustrates well the direct impact that health education can have in improving knowledge and awareness, and in changing hygiene behaviour. Further, it can provide insight into the public health outcomes of a multi-component integrated control program, where health education prevents re-infection and periodic drug treatment reduces prevalence and morbidity.
Resumo:
The mineral harmotome (Ba,Na,K)1-2(Si,Al)8O16⋅6H2O is a crystalline sodium calcium silicate which has the potential to be used in plaster boards and other industrial applications. It is a natural zeolite with catalytic potential. Raman bands at 1020 and 1102 cm−1 are assigned to the SiO stretching vibrations of three dimensional siloxane units. Raman bands at 428, 470 and 491 cm−1 are assigned to OSiO bending modes. The broad Raman bands at around 699, 728, 768 cm−1 are attributed to water librational modes. Intense Raman bands in the 3100 to 3800 cm−1 spectral range are assigned to OH stretching vibrations of water in harmotome. Infrared spectra are in harmony with the Raman spectra. A sharp infrared band at 3731 cm−1 is assigned to the OH stretching vibration of SiOH units. Raman spectroscopy with complimentary infrared spectroscopy enables the characterization of the silicate mineral harmotome.
Resumo:
The molecular structure of the copper–lead silicate mineral luddenite has been analysed using vibrational spectroscopy. The mineral is only one of many silicate minerals containing copper. The intense Raman band at 978 cm−1 is assigned to the ν1 (A1g) symmetric stretching vibration of Si5O14 units. Raman bands at 1122, 1148 and 1160 cm−1 are attributed to the ν3 SiO4 antisymmetric stretching vibrations. The bands in the 678–799 cm−1 are assigned to OSiO bending modes of the (SiO3)n chains. Raman bands at 3317 and 3329 cm−1 are attributed to water stretching bands. Bands at 3595 and 3629 cm−1 are associated with the stretching vibrations of hydroxyl units suggesting that hydroxyl units exist in the structure of luddenite.