937 resultados para Zea, Leopoldo
Resumo:
Two experiments were carried out under greenhouse conditions to study the accumulation and distribution of dry mass and macronutrients in maize and Ipomoea hederifolia. Plants of both species had grown, separately, in pots with sand substrate and irrigation with nutrient solution. Treatments were represented by the times of evaluation, realized in intervals of 14 days, starting at 21 days after emergence (DAE). A maize plant showed slight growth up to 30 DAE, when dry mass allocation was higher in roots and leaves (80%); while an I. hederifolia plant, up to 50 DAE, when the allocation of dry mass was higher in offshoots and leaves (79). Dry mass accumulation was almost five times greater in maize (134 g per plant) than in I. hederifolia (29 g per plant). The average values of N and K contents were greater in I. hederifolia. Maximum accumulations of macronutrients by maize were 1,431; 474; 1,832; 594; 340, and 143 mg per plant, while by I. hederifolia, 727; 52; 810; 350; 148, and 65 mg per plant, for N, P, K, Ca, Mg, and S, respectively. Mean accumulation rate of dry mass and macronutrients by maize plants was crescent up to 87 DAE, reaching the maximum value at 103 DAE; while being crescent up to 121 DAE by I. hederifolia plants, reaching the maximum value at 138 DAE. Thus, beyond the interference on harvesting process, a population of I. hederifolia also can compete with maize crop for nutrients.
Resumo:
Q field experiment was carried out at the Gralha Azul Experimental Farm/PUCPR, in the municipality of Fazenda Rio Grande-PR, to evaluate the effect of different times and coexistence extension periods of weeds interfering in corn yield. The experiment was arranged in a complete randomized complete block design and the treatments in a 4x5+2 factorial, with four replications. The treatments were as follows: four initial weed control periods (0-0, 0-7, 0-14 and 0-21 DAE) and five restarted weed control periods until the harvest (28, 42, 56, 70 and 84 DAE) and two checks, weedy and weed-free. The experiment was carried out under a no-till system. The period prior to weed interference (PBWI), the start of the critical period of weed interference (CPWI) and the infesting community were evaluated. When the initial weed control period was 0-0 day, the PPWI was at 9 DAE of corn; however, with increasing initial weed control periods (0-7, 0-14 and 0-21 DAE) the period prior to weed interference inncreased in relation to 0-0 day of the initial weed control, evidencing the existence of PPWI-S of 17, 24 and 28 DAE of corn, respectively. Thus CPWI initiates at the end of PPWI-S, the period when weed control is indispensable to prevent a significant reduction in corn yield. Coexistance with the weeds throughout the crop cycle reduced yield in 15%, compared to the weed-free check. Nine species of seven botanical families were assessed in the infesting community. Reduced density and dry mass were verified in the weeds that coexisted with corn, compared to those that grew without it, thus evidencing a suppressive effect of corn over the infesting plants.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
The objective of this work was to evaluate the effect of processing two corn hybrids conserved, dry and humid grains, the dry matter (DM) and crude protein (CP) degradability in situ. The particle size was determined and difference was verified in MGD (Medium Geometric Diameter) of processed ingredients. Three sheep were used with rumen canulated, in a completely randomized design, using a factorial outline 2 x 2 x 3, being two corn hybrid, two conservation methods and three processing forms (whole, coarsely and finely ground), with five times of incubation (3, 6, 12, 24 and 48 hours). The fraction A in SDC (silage of dent corn) of DM was superior to GDC (grain of dent corn) in all of the particles size. The ensiling process increased the DM solubility, reducing the fraction B in comparison to dry grain. The values regarding the fractions DP and DE the 5% per hour of the protein, were larger for SDC and GDC, it presents a decreasing when the incubation time advances. The fermentation rate was superior for SDC and GDC. The ensiling process has positive effect in the decreasing of DM and CP in comparison to GDC.
Resumo:
The aim of the work was to evaluate the productivity, leaf nutrient content and soil nutrient concentration in maize (Zea mays L.) grown in sequence with black oats (Avena strigosa Schreb.) under Leucaena diversifolia alley cropping agroforestry system (AFS) and traditional management system/sole crop (without trees-TS), after two years of cultivation following a randomized block design. The experiment was carried out in the Brazilian Association of Biodynamic Agriculture, in Botucatu—S?o Paulo, Brazil. Treatments were: control (C), chemical fertilizer application (F), biomass of L. diversifolia alley cropping application (B), biomass of L. diversifolia alley cropping + chemical fertilizer application (B + F). In the second year of management it was observed that black oat yield was higher in treatments B + F and F with significant difference in relation to the others treatments in both systems, followed by treatment B. Between systems, only treatment B showed significant difference, with higher yield value corresponding to AFS, reflecting the efficiency of AFS to promote soil fertility. Maize production presented the second year of cultivation an increasing trend in all treatments in both production systems. This result may be due to the cumulative effect of mineralization and maize straw and oats, along the experiment. How productivity was higher in the AFS system, could also be occurring effect of biological nitrogen fixation, water retention and reduction of extreme microclimate through the rows of L. diversifolia. Comparing the AFS and TS, it was observed that the concentration of N in leaf tissue was higher in the AFS treatments, probably due to nitrogen fixation performed through the rows of L. diversifolia, that is a nitrogen fixing tree species. After two years, carbon stocked in soil show higher values in the treatments biomass + fertilizer and biomass application, in both systems, AFS and TS.
Resumo:
The genetic control of flowering time has been addressed by many quantitative trait locus (QTL) studies. A survey of the results from 29 independent studies reporting information on 441 QTLs led to the production of a QTL consensus map, which enabled the identification of 59 chromosome regions distributed on all chromosomes and shown to be frequently involved in the genetic control of flowering time and related traits. One of the major QTLs for flowering time, the Vegetative to generative transition 1 (Vgt1) locus , corresponds to an upstream (70 kb) non-coding regulatory element of ZmRap2.7, a repressor of flowering. A transposon (MITE) insertion was identified as a major allelic difference within Vgt1. One of the hypotheses is that Vgt1 might function by modifying ZmRap2.7 chromatin through an epigenetic mechanism. Therefore, the methylation state at Vgt1 was investigated using an approach that combines digestion with McrBc, an endonuclease that acts upon methylated DNA, and quantitative PCR. The analyses were performed on genomic DNA from leaves of six different maize lines at four stages of development. The results showed a trend of reduction of methylation from the first to the last stage with the exception of a short genomic region flanking the MITE insertion, which showed a constant and very dense methylation throughout leaf development and for both alleles. Preliminary results from bisulfite sequencing of a small portion of Vgt1 revealed differential methylation of a single cytosine residue between the two alleles. ZmRap2.7 expression was assayed in the four developmental stages afore mentioned for the six genotypes, in order to establish a link between methylation at Vgt1 and ZmRap2.7 transcription. To assess the role of Vgt1 as a transcriptional enhancer, two reporter vectors for stable transformation of plants have been developed.
Resumo:
In a previous study on maize (Zea mays, L.) several quantitative trait loci (QTL) showing high dominance-additive ratio for agronomic traits were identified in a population of recombinant inbred lines derived from B73 × H99. For four of these mapped QTL, namely 3.05, 4.10, 7.03 and 10.03 according to their chromosome and bin position, families of near-isogenic lines (NILs) were developed, i.e., couples of homozygous lines nearly identical except for the QTL region that is homozygote either for the allele provided by B73 or by H99. For two of these QTL (3.05 and 4.10) the NILs families were produced in two different genetic backgrounds. The present research was conducted in order to: (i) characterize these QTL by estimating additive and dominance effects; (ii) investigate if these effects can be affected by genetic background, inbreeding level and environmental growing conditions (low vs. high plant density). The six NILs’ families were tested across three years and in three Experiments at different inbreeding levels as NILs per se and their reciprocal crosses (Experiment 1), NILs crossed to related inbreds B73 and H99 (Experiment 2) and NILs crossed to four unrelated inbreds (Experiment 3). Experiment 2 was conducted at two plant densities (4.5 and 9.0 plants m-2). Results of Experiments 1 and 2 confirmed previous findings as to QTL effects, with dominance-additive ratio superior to 1 for several traits, especially for grain yield per plant and its component traits; as a tendency, dominance effects were more pronounced in Experiment 1. The QTL effects were also confirmed in Experiment 3. The interactions involving QTL effects, families and plant density were generally negligible, suggesting a certain stability of the QTL. Results emphasize the importance of dominance effects for these QTL, suggesting that they might deserve further studies, using NILs’ families and their crosses as base materials.
Isolation and functional characterization of a high affinity urea transporter from roots of Zea mays
Resumo:
Background: Despite its extensive use as a nitrogen fertilizer, the role of urea as a directly accessible nitrogen source for crop plants is still poorly understood. So far, the physiological and molecular aspects of urea acquisition have been investigated only in few plant species highlighting the importance of a high-affinity transport system. With respect to maize, a worldwide-cultivated crop requiring high amounts of nitrogen fertilizer, the mechanisms involved in the transport of urea have not yet been identified. The aim of the present work was to characterize the high-affinity urea transport system in maize roots and to identify the high affinity urea transporter. Results: Kinetic characterization of urea uptake (<300 mu M) demonstrated the presence in maize roots of a high-affinity and saturable transport system; this system is inducible by urea itself showing higher Vmax and Km upon induction. At molecular level, the ORF sequence coding for the urea transporter, ZmDUR3, was isolated and functionally characterized using different heterologous systems: a dur3 yeast mutant strain, tobacco protoplasts and a dur3 Arabidopsis mutant. The expression of the isolated sequence, ZmDUR3-ORF, in dur3 yeast mutant demonstrated the ability of the encoded protein to mediate urea uptake into cells. The subcellular targeting of DUR3/GFP fusion proteins in tobacco protoplasts gave results comparable to the localization of the orthologous transporters of Arabidopsis and rice, suggesting a partial localization at the plasma membrane. Moreover, the overexpression of ZmDUR3 in the atdur3-3 Arabidopsis mutant showed to complement the phenotype, since different ZmDUR3-overexpressing lines showed either comparable or enhanced 15N]-urea influx than wild-type plants. These data provide a clear evidence in planta for a role of ZmDUR3 in urea acquisition from an extra-radical solution. Conclusions: This work highlights the capability of maize plants to take up urea via an inducible and high-affinity transport system. ZmDUR3 is a high-affinity urea transporter mediating the uptake of this molecule into roots. Data may provide a key to better understand the mechanisms involved in urea acquisition and contribute to deepen the knowledge on the overall nitrogen-use efficiency in crop plants.
Resumo:
Auxin (IAA) is an important regulator of plant development and root differentiation. Although recent studies indicate that salicylic acid (SA) may also be important in this context by interfering with IAA signaling, comparatively little is known about its impact on the plant’s physiology, metabolism, and growth characteristics. Using carbon-11, a short-lived radioisotope (t 1/2 = 20.4 min) administered as 11CO2 to maize plants (B73), we measured changes in these functions using SA and IAA treatments. IAA application decreased total root biomass, though it increased lateral root growth at the expense of primary root elongation. IAA-mediated inhibition of root growth was correlated with decreased 11CO2 fixation, photosystem II (PSII) efficiency, and total leaf carbon export of 11C-photoassimilates and their allocation belowground. Furthermore, IAA application increased leaf starch content. On the other hand, SA application increased total root biomass, 11CO2 fixation, PSII efficiency, and leaf carbon export of 11C-photoassimilates, but it decreased leaf starch content. IAA and SA induction patterns were also examined after root-herbivore attack by Diabrotica virgifera to place possible hormone crosstalk into a realistic environmental context. We found that 4 days after infestation, IAA was induced in the midzone and root tip, whereas SA was induced only in the upper proximal zone of damaged roots. We conclude that antagonistic crosstalk exists between IAA and SA which can affect the development of maize plants, particularly through alteration of the root system’s architecture, and we propose that the integration of both signals may shape the plant’s response to environmental stress.
Resumo:
von L. Wittmack
Resumo:
Abstract: The effect of chilling on the intercellular distribution of mRNAs for enzymes of assimilatory sulfate reduction, the activity of adenosine 5′-phosphosulfate reductase (APR), and the level of glutathione was analysed in leaves and roots of maize (Zea mays L). At 25 °C the mRNAs for APR, ATP sulfurylase, and sulfite reductase accumulated in bundle-sheath only, whereas the mRNA for O-acetylserine sulfhydrylase was also detected in mesophyll cells. Glutathione was predominantly detected in mesophyll cells; however, oxidized glutathione was equally distributed between the two cell types. Chilling at 12 °C induced oxidative stress which resulted in increased concentrations of oxidized glutathione in both cell types and a prominent increase of APR mRNA and activity in bundle-sheath cells. After chilling, mRNAs for APR and sulfite reductase, as well as low APR activity, were detected in mesophyll cells. In roots, APR mRNA and activity were at higher levels in root tips than in the mature root and were greatly increased after chilling. These results demonstrate that chilling stress affected the levels and the intercellular distribution of mRNAs for enzymes of sulfate assimilation.
Resumo:
Contiene: Leopoldo nos cambió la vida / María Rosa Fogeler. El Don de Leopoldo / María Elena Elena Krautstofl. El gran anfitrión / Omar Arach. El tiempo mide al hombre / Manuel Moreira. El extranjero peregrino / Andrea Mastrángelo. Cortes de luz / Marina Hlebovich. Hasta siempre querido Leo / Natalia Otero C. Hay que fundar donde no hay nada / Brián Ferrero. Los consejos del maestro / Carolina Diez. El gran minimalista / Brígida Renoldi.
Resumo:
Revista del Instituto de Lenguas y Literaturas Modernas, Facultad de Filosofía y Letras, Universidad Nacional de Cuyo. En este número en particular los artículos giran en torno a la temática: "Homenaje a Leopoldo Marechal"
Resumo:
Leopoldo Marechal ha producido un teatro de gran relevancia, que como toda su obra expone una problemática trascendente. Mas el sentido de lo teatral está implícito en toda su novelística, tanto por la caracterización de personajes como por la utilización de recursos netamente escénicos. Inclusive el escritor es consciente de esto y en sus novelas siempre inserta reflexiones sobre el teatro. Por esto, resulta muy significativo el hecho de que en el sainete “a lo divino", La Batalla de José Luna, se prefigure la novela Megafón o la guerra.