984 resultados para XANES,TiO2,assorbimento ottico,TEM,spettroscopia di assorbimento,sincrotrone
Resumo:
Titanium dioxide (TiO2) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO2 films were investigated. The refractive index of TiO2 films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO2 film is of anatase phase after annealing at 300 degrees C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate the activity of Ti0.84Pt0.01Fe0.15O2-delta and Ti0.73Pd0.02Fe0.25O2-delta catalysts towards the CO oxidation and water gas shift (VMS) reaction. Both the catalysts were synthesized in the nano crystalline form by a low temperature sonochemical method and characterized by different techniques such as XRD, FT-Raman, TEM, FT-IR, XPS and BET surface analyzer. H-2-TPR results corroborate the intimate contact between noble metal and Fe ions in the both catalysts that facilitates the reducibility of the support. In the absence of feed CO2 and H-2, nearly 100% conversion of CO to CO2 with 100% H-2 selectivity was observed at 300 degrees C and 260 degrees C respectively, for Ti0.84Pt0.01Fe0.15O2-delta and Ti0.73Pd0.02Fe0.25O2-delta catalyst. However, the catalytic performance of Ti0.73Pd0.02Fe0.25O2-delta deteriorates in the presence of feed CO2 and H-2. The change in the support reducibility is the primary reason for the significant increase in the activity for CO oxidation and WGS reaction. The effect of Fe addition was more significant in Ti0.73Pd0.02Fe0.25O2-delta than Ti0.84Pt0.01Fe0.15O2-delta. Based on the spectroscopic evidences and surface phenomena, a hybrid reaction scheme utilizing both surface hydroxyl groups and the lattice oxygen was hypothesized over these catalysts for WGS reaction. The mechanisms based on the formate and redox pathway were used to fit the ldnetic data. The analysis of experimental data shows the redox mechanism is the dominant pathway over these catalysts. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Metal-ion (Ag, Co, Ni, and Pd) doped TiO2 nanocatalysts were successfully embedded on carbon-covered alumina supports. The CCA-embedded catalysts were crystalline and had a high surface area compared to the free metal-ion doped titania nanocatalysts while they still retained the anatase phase of the core TiO2. These catalysts were photocatalytically active under solar light irradiation. Rhodamine B was used as a model pollutant and the reactivity followed a pseudo-first-order reaction kinetics. The reaction rate of the CCA-supported catalysts was Pd > Ag > Co > Ni. Among the ratios of the CCA:catalyst used, it was found that the 1:1 ratio had the fastest reaction rate, followed by the 1:2 ratio, while the 2:1 ratio exhibited the lowest reaction rate. The CCA/metal-ion doped titania were found to have photocatalytic activities comparable with those of CCA-supported titania.
Resumo:
The photocatalytic activity of commercial titanium dioxide under UV and visible radiation was improved by composites of tungsten trioxide (WO3) with TiO2. WO3 was prepared by solution combustion synthesis and the mixed oxides/composites of WO3-TiO2 were prepared in different weight ratios (0, 0.10, 0.15, 0.20, 0.25, 0.50, 0.75, and 1) by physical mixing. These catalysts were characterized by XRD, DRS, BET, SEM, TEM, pH drift method, TGA and photoluminescence. The photocatalytic activity varies with the WO3 loading in the composites. The optimum loading of WO3 in the composites was found to be 15 wt% for both UV and visible radiation. This loading showed faster dye degradation rate than commercial TiO2 (TiO2-C) and WO3 (WO3-C). The effect of initial concentrations of methylene blue (MB) and orange G (OG) and the effect of the functional group on dye degradation was studied with both anionic and cationic dyes with 15 wt% WO3-TiO2. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Metal-oxide semiconductor capacitors based on titanium dioxide (TiO2) gate dielectrics were prepared by RF magnetron sputtering technique. The deposited films were post-annealed at temperatures in the range 773-1173 K in air for 1 hour. The effect of annealing temperature on the structural properties of TiO2 films was investigated by X-ray diffraction and Raman spectroscopy, the surface morphology was studied by atomic force microscopy (AFM) and the electrical properties of Al/TiO2/p-Si structure were measured recording capacitance-voltage and current-voltage characteristics. The as-deposited films and the films annealed at temperatures lower than 773 K formed in the anatase phase, while those annealed at temperatures higher than 973 K were made of mixtures of the rutile and anatase phases. FTIR analysis revealed that, in the case of films annealed at 1173 K, an interfacial layer had formed, thereby reducing the dielectric constant. The dielectric constant of the as-deposited films was 14 and increased from 25 to 50 with increases in the annealing temperature from 773 to 973 K. The leakage current density of as-deposited films was 1.7 x 10(-5) and decreased from 4.7 X 10(-6) to 3.5 x 10(-9) A/cm(2) with increases in the annealing temperature from 773 to 1173 K. The electrical conduction in the Al/TiO2/p-Si structures was studied on the basis of the plots of Schottky emission, Poole-Frenkel emission and Fowler-Nordheim tunnelling. The effect of structural changes on the current-voltage and capacitance-voltage characteristics of Al/TiO2/p-Si capacitors was also discussed.
Resumo:
In the quest for more efficient photoanodes in the photoelectrochemical oxidation processes for organic pollutant degradation and mineralisation in water treatment, we present the synthesis, characterisation and photoelectrochemical application of expanded graphite-TiO2 composite (EG-TiO2) prepared using the sol-gel method with organically modified silicate. The Brunauer-Emmett-Teller surface area analyser, ultraviolet-visible diffuse reflectance, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry, Raman spectrometry and X-ray photoelectron spectroscopy were employed for the characterisation of the composites. The applicability of the EG-TiO2 as photoanode material was investigated by the photoelectrochemical degradation of p-nitrophenol as a target pollutant in a 0.1 M Na2SO4 (pH 7) solution at a current density of 5 mA cm(-2). After optimising the TiO2 loading, initial p-nitrophenol concentration, pH and current density, a removal efficiency of 62% with an apparent kinetic rate constant of 10.4 x 10(-3) min(-1) was obtained for the photoelectrochemical process as compared to electrochemical oxidation and photolysis, where removal efficiencies of 6% and 24% were obtained respectively after 90 min. Furthermore, the EG-TiO2 electrode was able to withstand high current density due to its high stability. The EG-TiO2 electrode was also used to degrade 0.3 x 10(-4) M methylene blue and 0.1 x 10(-4) M Eosin Yellowish, leading to 94% and 47% removal efficiency within 120 reaction time. This confirms the suitability of the EG-TiO2 electrode to degrade other organic pollutants.
Resumo:
An alternative antibody-free strategy for the rapid electrochemical detection of cardiac myoglobin has been demonstrated here using hydrothermally synthesized TiO2 nanotubes (Ti-NT). The denaturant induced unfolding of myoglobin led to easy access of the deeply buried electroactive heme center and thus the efficient reversible electron transfer from protein to electrode surface. The sensing performance of the Ti-NT modified electrodes were compared vis a vis commercially available titania and GCEs. The tubular morphology of the Ti-NT led to facile transfer of electrons to the electrode surface, which eventually provided a linear current response (obtained from cyclic voltammetry) over a wide range of Mb concentration. The sensitivity of the Ti-NT based sensor was remarkable and was equal to 18 mu A mg(-1) ml (detection limit = 50 nM). This coupled with the rapid analysis time of a few tens of minutes (compared to a few days for ELISA) demonstrates its potential usefulness for the early detection of acute myocardial infarction (AMI).
Resumo:
Water-dispersible, photocatalytic Fe3O4@TiO2 core shell magnetic nanoparticles have been prepared by anchoring cyclodextrin cavities to the TiO2 shell, and their ability to capture and photocatalytically destroy endocrine-disrupting chemicals, bisphenol A and dibutyl phthalate, present in water, has been demonstrated. The functionalized nanoparticles can be magnetically separated from the dispersion after photocatalysis and hence reused. Each component of the cyclodextrin-functionalized Fe3O4@TiO2 core shell nanoparticle has a crucial role in its functioning. The tethered cyclodextrins are responsible for the aqueous dispersibility of the nanoparticles and their hydrophobic cavities for the capture of the organic pollutants that may be present in water samples. The amorphous TiO2 shell is the photocatalyst for the degradation and mineralization of the organics, bisphenol A and dibutyl phthalate, under UV illumination, and the magnetism associated with the 9 nm crystalline Fe3O4 core allows for the magnetic separation from the dispersion once photocatalytic degradation is complete. An attractive feature of these ``capture and destroy'' nanomaterials is that they may be completely removed from the dispersion and reused with little or no loss of catalytic activity.
Resumo:
The nanocomposites of xTiO(2)+(1-x)Ni0.53Cu0.12Zn0.35Fe2O4 (where 0 <= x >= 1) were prepared using microwave hydrothermal (M H) method at 165 degrees C/45 min. The as-synthesized powders were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The particle size of the powder varies from 18 to 35 nm. The as prepared powders were densified at 500 degrees C/30 min using microwave sintering method. The sintered composites were characterized by XRD and scanning electron microscopy (SEM). The bulk densities of the present composites were increasing with the addition of TiO2. The grain sizes of all the composite vary between 65 nm and 90 nm. The addition of TiO2 to ferrite increased the dielectric properties (epsilon' and epsilon `') also the resonant frequency of all the composites was found to be greater than 1 GHz. The imaginary part of permeability mu `' was found to increase with an increase of TiO2.
Resumo:
Porous titanium oxide-carbon hybrid nanostructure (TiO2-C) with a specific surface area of 350 m(2)/g and an average pore-radius of 21 center dot 8 is synthesized via supramolecular self-assembly with an in situ crystallization process. Subsequently, TiO2-C supported Pt-Ru electro-catalyst (Pt-Ru/TiO2-C) is obtained and investigated as an anode catalyst for direct methanol fuel cells (DMFCs). X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM) have been employed to evaluate the crystalline nature and the structural properties of TiO2-C. TEM images reveal uniform distribution of Pt-Ru nanoparticles (d (Pt -aEuro parts per thousand Ru) = 1 center dot 5-3 center dot 5 nm) on TiO2-C. Methanol oxidation and accelerated durability studies on Pt-Ru/TiO2-C exhibit enhanced catalytic activity and durability compared to carbon-supported Pt-Ru. DMFC employing Pt-Ru/TiO2-C as an anode catalyst delivers a peak-power density of 91 mW/cm(2) at 65 A degrees C as compared to the peak-power density of 60 mW/cm(2) obtained for the DMFC with carbon-supported Pt-Ru anode catalyst operating under similar conditions.
Resumo:
We have analyzed the characteristics of electrodes made of TiO2 nanotubes, microspheres and commercially available nanoparticles for dye sensitized solar cell. The morphology of the electrodes and the formation of aggregates have been analyzed by scanning electron microscopy and surface profiling technique. The concentration of Ti3+ type impurity state on the surface of these electrodes is quantified by X-ray photoelectron spectroscopy. Micro structural properties have been characterized by Brunauer, Emmett and Teller method The optical properties of the electrodes such as band gap energy, the type of band formation and the diffuse reflectance are evaluated by UV-Visible spectroscopy. The photovoltaic characteristics of dye solar cell made of these electrodes have been evaluated and it is found that the characteristics of the TiO2 film alone can alter the overall conversion efficiency to a great extent. Additional analysis using electrochemical impedance spectroscopy has been carried out to probe the electron transport properties and charge collection efficiency of these electrodes.
Resumo:
Glasses in the x(BaO-TiO2)-B2O3 (x = 0.25, 0.5, 0.75, and 1 mol.) system were fabricated via the conventional melt-quenching technique. Thermal stability and glass-forming ability as determined by differential thermal analysis (DTA) were found to increase with increasing BaO-TiO2 (BT) content. However, there was no noticeable change in the glass transition temperature (T-g). This was attributed to the active participation of TiO2 in the network formation especially at higher BT contents via the conversion of the TiO6 structural units into TiO4 units, which increased the connectivity and resulted in an increase in crystallization temperature. Dielectric and optical properties at room temperature were studied for all the glasses under investigation. Interestingly, these glasses were found to be hydrophobic. The results obtained were correlated with different structural units and their connectivity in the glasses.
Resumo:
A series of 2,5-di(4-aryloylaryloxymethyl)-1,3,4-oxadiazoles 9a-j were obtained via multistep synthesis from hydroxybenzophenones 4a-e. The cytotoxicity of compounds 9a-j was evaluated against human leukemia cell lilies (K562 and CEM). The compounds exhibited moderate to good anti-cancer activity with compounds 9b and 9i having a chloro group exhibiting the best activity (IC50 = 10 mu M). Compound 9i exhibited activity against both the cell lines and 9b only exhibited activity against CEM. Further, a lactate dehydrogenase (LDH) assay and DNA fragmentation studies of the compounds 9a-j were also performed. (C) 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
C-di-GMP Bis-(3'-5')-cyclic-dimeric-guanosine monophosphate], a second messenger is involved in intracellular communication in the bacterial species. As a result several multi-cellular behaviors in both Gram-positive and Gram-negative bacteria are directly linked to the intracellular level of c-di-GMP. The cellular concentration of c-di-GMP is maintained by two opposing activities, diguanylate cyclase (DGC) and phosphodiesterase (PDE-A). In Mycobacterium smegmatis, a single bifunctional protein MSDGC-1 is responsible for the cellular concentration of c-di-GMP. A better understanding of the regulation of c-di-GMP at the genetic level is necessary to control the function of above two activities. In this work, we have characterized the promoter element present in msdgc-1 along with the + 1 transcription start site and identified the sigma factors that regulate the transcription of msdgc-1. Interestingly, msdgc-1 utilizes SigA during the initial phase of growth, whereas near the stationary phase SigB containing RNA polymerase takes over the expression of msdgc-1. We report here that the promoter activity of msdgc-1 increases during starvation or depletion of carbon source like glucose or glycerol. When msdgc-1 is deleted, the numbers of viable cells are similar to 10 times higher in the stationary phase in comparison to that of the wild type. We propose here that msdgc-1 is involved in the regulation of cell population density. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Rutile phase TiO2 nanoparticles have been successfully prepared at 120 degrees C for one day via the ionothermal method using imidazolium based functionalized ionic liquid. The obtained products have been characterized by various techniques. XRD pattern shows rutile phase with crystallite size similar to 15 nm. FTIR shows a band at similar to 410 cm(-1) assigned to Ti-O-Ti stretching vibrations and few other bands due to the presence of ionic liquid. UV-vis studies show maximum absorbance at similar to 215 nm due to the imidazolium moiety and a band at 316 nm due to TiO2 nanoparticles. TEM images show that the size of particle is similar to 30 nm. TG-DTA shows weight loss corresponding to the formation of stable TiO2 nanoparticles. The rutile TiO2 nanoparticle is a promising material for hydrogen generation through photocatalysis. (C) 2013 Elsevier B.V. All rights reserved.