943 resultados para Wireless performance metrics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research has shown that performance differences exist between brand-affiliated hotels and unaffiliated properties. However, the extant empirical results are mixed. Some research has shown that brands outperform unaffiliated hotels on various metrics, whereas other research has shown the opposite. This article analyzes this issue using a matched-pair approach where we compare the performance differences of brand-affiliated and unaffiliated properties between 1998 and 2010. The matched-pair approach ensures that local competitive conditions as well as hotel characteristics are the same across the comparison pair. In addition, all potential omitted-variable bias and model misspecifications are avoided. Thus, to address our research question, we compare branded hotels with unaffiliated properties that are identical in age, market segment, location, and duration of operation, as well as having a similar number of rooms. Our analysis shows that performance differentials are present, albeit not systematic. We found no consistent advantages in all segments for either the affiliated hotels or the comparable unaffiliated properties, taking into account our comparison factors. That said, the methodology of our approach yields results that are more informative to the affiliation choice of owners and to the growth strategies of hotel brand–owner companies than those of previous empirical studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study is to investigate two candidate waveforms for next generation wireless systems, filtered Orthogonal Frequency Division Multiplexing (f-OFDM) and Unified Filtered Multi-Carrier (UFMC). The evaluation is done based on the power spectral density analysis of the signal and performance measurements in synchronous and asynchronous transmission. In f-OFDM we implement a soft truncated filter with length 1/3 of OFDM symbol. In UFMC we use the Dolph-Chebyshev filter, limited to the length of zero padding (ZP). The simulation results demonstrates that both waveforms have a better spectral behaviour compared with conventional OFDM. However, the induced inter-symbol interference (ISI) caused by the filter in f-OFDM, and the inter-carrier interference (ICI) induced in UFMC due to cyclic prefix (CP) reduction , should be kept under control. In addition, in a synchronous transmission case with ideal parameters, f-OFDM and UFMC appear to have similar performance with OFDM. When carrier frequency offset (CFO) is imposed in the transmission, UFMC outperforms OFDM and f-OFDM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pavements tend to deteriorate with time under repeated traffic and/or environmental loading. By detecting pavement distresses and damage early enough, it is possible for transportation agencies to develop more effective pavement maintenance and rehabilitation programs and thereby achieve significant cost and time savings. The structural health monitoring (SHM) concept can be considered as a systematic method for assessing the structural state of pavement infrastructure systems and documenting their condition. Over the past several years, this process has traditionally been accomplished through the use of wired sensors embedded in bridge and highway pavement. However, the use of wired sensors has limitations for long-term SHM and presents other associated cost and safety concerns. Recently, micro-electromechanical sensors and systems (MEMS) and nano-electromechanical systems (NEMS) have emerged as advanced/smart-sensing technologies with potential for cost-effective and long-term SHM. This two-pronged study evaluated the performance of commercial off-the-shelf (COTS) MEMS sensors embedded in concrete pavement (Final Report Volume I) and developed a wireless MEMS multifunctional sensor system for health monitoring of concrete pavement (Final Report Volume II).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent paradigms in wireless communication architectures describe environments where nodes present a highly dynamic behavior (e.g., User Centric Networks). In such environments, routing is still performed based on the regular packet-switched behavior of store-and-forward. Albeit sufficient to compute at least an adequate path between a source and a destination, such routing behavior cannot adequately sustain the highly nomadic lifestyle that Internet users are today experiencing. This thesis aims to analyse the impact of the nodes’ mobility on routing scenarios. It also aims at the development of forwarding concepts that help in message forwarding across graphs where nodes exhibit human mobility patterns, as is the case of most of the user-centric wireless networks today. The first part of the work involved the analysis of the mobility impact on routing, and we found that node mobility significance can affect routing performance, and it depends on the link length, distance, and mobility patterns of nodes. The study of current mobility parameters showed that they capture mobility partially. The routing protocol robustness to node mobility depends on the routing metric sensitivity to node mobility. As such, mobility-aware routing metrics were devised to increase routing robustness to node mobility. Two categories of routing metrics proposed are the time-based and spatial correlation-based. For the validation of the metrics, several mobility models were used, which include the ones that mimic human mobility patterns. The metrics were implemented using the Network Simulator tool using two widely used multi-hop routing protocols of Optimized Link State Routing (OLSR) and Ad hoc On Demand Distance Vector (AODV). Using the proposed metrics, we reduced the path re-computation frequency compared to the benchmark metric. This means that more stable nodes were used to route data. The time-based routing metrics generally performed well across the different node mobility scenarios used. We also noted a variation on the performance of the metrics, including the benchmark metric, under different mobility models, due to the differences in the node mobility governing rules of the models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. WikiRate is a Collective Awareness Platform for Sustainability and Social Innovation (CAPS) project with the aim of \crowdsourcing better companies" through analysis of their Environmental Social and Governance (ESG) performance. Research to inform the design of the platform involved surveying the current corporate ESG information landscape, and identifying ways in which an open approach and peer production ethos could be e ffectively mobilised to improve this landscape's fertility. The key requirement identi ed is for an open public repository of data tracking companies' ESG performance. Corporate Social Responsibility reporting is conducted in public, but there are barriers to accessing the information in a standardised analysable format. Analyses of and ratings built upon this data can exert power over companies' behaviour in certain circumstances, but the public at large have no access to the data or the most infuential ratings that utilise it. WikiRate aims to build an open repository for this data along with tools for analysis, to increase public demand for the data, allow a broader range of stakeholders to participate in its interpretation, and in turn drive companies to behave in a more ethical manner. This paper describes the quantitative Metrics system that has been designed to meet those objectives and some early examples of its use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deployment of low power basestations within cellular networks can potentially increase both capacity and coverage. However, such deployments require efficient resource allocation schemes for managing interference from the low power and macro basestations that are located within each other’s transmission range. In this dissertation, we propose novel and efficient dynamic resource allocation algorithms in the frequency, time and space domains. We show that the proposed algorithms perform better than the current state-of-art resource management algorithms. In the first part of the dissertation, we propose an interference management solution in the frequency domain. We introduce a distributed frequency allocation scheme that shares frequencies between macro and low power pico basestations, and guarantees a minimum average throughput to users. The scheme seeks to minimize the total number of frequencies needed to honor the minimum throughput requirements. We evaluate our scheme using detailed simulations and show that it performs on par with the centralized optimum allocation. Moreover, our proposed scheme outperforms a static frequency reuse scheme and the centralized optimal partitioning between the macro and picos. In the second part of the dissertation, we propose a time domain solution to the interference problem. We consider the problem of maximizing the alpha-fairness utility over heterogeneous wireless networks (HetNets) by jointly optimizing user association, wherein each user is associated to any one transmission point (TP) in the network, and activation fractions of all TPs. Activation fraction of a TP is the fraction of the frame duration for which it is active, and together these fractions influence the interference seen in the network. To address this joint optimization problem which we show is NP-hard, we propose an alternating optimization based approach wherein the activation fractions and the user association are optimized in an alternating manner. The subproblem of determining the optimal activation fractions is solved using a provably convergent auxiliary function method. On the other hand, the subproblem of determining the user association is solved via a simple combinatorial algorithm. Meaningful performance guarantees are derived in either case. Simulation results over a practical HetNet topology reveal the superior performance of the proposed algorithms and underscore the significant benefits of the joint optimization. In the final part of the dissertation, we propose a space domain solution to the interference problem. We consider the problem of maximizing system utility by optimizing over the set of user and TP pairs in each subframe, where each user can be served by multiple TPs. To address this optimization problem which is NP-hard, we propose a solution scheme based on difference of submodular function optimization approach. We evaluate our scheme using detailed simulations and show that it performs on par with a much more computationally demanding difference of convex function optimization scheme. Moreover, the proposed scheme performs within a reasonable percentage of the optimal solution. We further demonstrate the advantage of the proposed scheme by studying its performance with variation in different network topology parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis was threefold, firstly, to compare current player tracking technology in a single game of soccer. Secondly, to investigate the running requirements of elite women’s soccer, in particular the use and application of athlete tracking devices. Finally, how can game style be quantified and defined. Study One compared four different match analysis systems commonly used in both research and applied settings: video-based time-motion analysis, a semi-automated multiple camera based system, and two commercially available Global Positioning System (GPS) based player tracking systems at 1 Hertz (Hz) and 5 Hz respectively. A comparison was made between each of the systems when recording the same game. Total distance covered during the match for the four systems ranged from 10 830 ± 770 m (semi-automated multiple camera based system) to 9 510 ± 740m (video-based time-motion analysis). At running speeds categorised as high-intensity running (>15 km⋅h-1), the semi-automated multiple camera based system reported the highest distance of 2 650 ± 530 m with video-based time-motion analysis reporting the least amount of distance covered with 1 610 ± 370 m. At speeds considered to be sprinting (>20 km⋅h-1), the video-based time-motion analysis reported the highest value (420 ± 170 m) and 1 Hz GPS units the lowest value (230 ± 160 m). These results demonstrate there are differences in the determination of the absolute distances, and that comparison of results between match analysis systems should be made with caution. Currently, there is no criterion measure for these match analysis methods and as such it was not possible to determine if one system was more accurate than another. Study Two provided an opportunity to apply player-tracking technology (GPS) to measure activity profiles and determine the physical demands of Australian international level women soccer players. In four international women’s soccer games, data was collected on a total of 15 Australian women soccer players using a 5 Hz GPS based athlete tracking device. Results indicated that Australian women soccer players covered 9 140 ± 1 030 m during 90 min of play. The total distance covered by Australian women was less than the 10 300 m reportedly covered by female soccer players in the Danish First Division. However, there was no apparent difference in the estimated "#$%&', as measured by multi-stage shuttle tests, between these studies. This study suggests that contextual information, including the “game style” of both the team and opposition may influence physical performance in games. Study Three examined the effect the level of the opposition had on the physical output of Australian women soccer players. In total, 58 game files from 5 Hz athlete-tracking devices from 13 international matches were collected. These files were analysed to examine relationships between physical demands, represented by total distance covered, high intensity running (HIR) and distances covered sprinting, and the level of the opposition, as represented by the Fédération Internationale de Football Association (FIFA) ranking at the time of the match. Higher-ranking opponents elicited less high-speed running and greater low-speed activity compared to playing teams of similar or lower ranking. The results are important to coaches and practitioners in the preparation of players for international competition, and showed that the differing physical demands required were dependent on the level of the opponents. The results also highlighted the need for continued research in the area of integrating contextual information in team sports and demonstrated that soccer can be described as having dynamic and interactive systems. The influence of playing strategy, tactics and subsequently the overall game style was highlighted as playing a significant part in the physical demands of the players. Study Four explored the concept of game style in field sports such as soccer. The aim of this study was to provide an applied framework with suggested metrics for use by coaches, media, practitioners and sports scientists. Based on the findings of Studies 1- 3 and a systematic review of the relevant literature, a theoretical framework was developed to better understand how a team’s game style could be quantified. Soccer games can be broken into key moments of play, and for each of these moments we categorised metrics that provide insight to success or otherwise, to help quantify and measure different methods of playing styles. This study highlights that to date, there had been no clear definition of game style in team sports and as such a novel definition of game style is proposed that can be used by coaches, sport scientists, performance analysts, media and general public. Studies 1-3 outline four common methods of measuring the physical demands in soccer: video based time motion analysis, GPS at 1 Hz and at 5 Hz and semiautomated multiple camera based systems. As there are no semi-automated multiple camera based systems available in Australia, primarily due to cost and logistical reasons, GPS is widely accepted for use in team sports in tracking player movements in training and competition environments. This research identified that, although there are some limitations, GPS player-tracking technology may be a valuable tool in assessing running demands in soccer players and subsequently contribute to our understanding of game style. The results of the research undertaken also reinforce the differences between methods used to analyse player movement patterns in field sports such as soccer and demonstrate that the results from different systems such as GPS based athlete tracking devices and semi-automated multiple camera based systems cannot be used interchangeably. Indeed, the magnitude of measurement differences between methods suggests that significant measurement error is evident. This was apparent even when the same technologies are used which measure at different sampling rates, such as GPS systems using either 1 Hz or 5 Hz frequencies of measurement. It was also recognised that other factors influence how team sport athletes behave within an interactive system. These factors included the strength of the opposition and their style of play. In turn, these can impact the physical demands of players that change from game to game, and even within games depending on these contextual features. Finally, the concept of what is game style and how it might be measured was examined. Game style was defined as "the characteristic playing pattern demonstrated by a team during games. It will be regularly repeated in specific situational contexts such that measurement of variables reflecting game style will be relatively stable. Variables of importance are player and ball movements, interaction of players, and will generally involve elements of speed, time and space (location)".

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Life Cycle Climate Performance (LCCP) is an evaluation method by which heating, ventilation, air conditioning and refrigeration systems can be evaluated for their global warming impact over the course of their complete life cycle. LCCP is more inclusive than previous metrics such as Total Equivalent Warming Impact. It is calculated as the sum of direct and indirect emissions generated over the lifetime of the system “from cradle to grave”. Direct emissions include all effects from the release of refrigerants into the atmosphere during the lifetime of the system. This includes annual leakage and losses during the disposal of the unit. The indirect emissions include emissions from the energy consumption during manufacturing process, lifetime operation, and disposal of the system. This thesis proposes a standardized approach to the use of LCCP and traceable data sources for all aspects of the calculation. An equation is proposed that unifies the efforts of previous researchers. Data sources are recommended for average values for all LCCP inputs. A residential heat pump sample problem is presented illustrating the methodology. The heat pump is evaluated at five U.S. locations in different climate zones. An excel tool was developed for residential heat pumps using the proposed method. The primary factor in the LCCP calculation is the energy consumption of the system. The effects of advanced vapor compression cycles are then investigated for heat pump applications. Advanced cycle options attempt to reduce the energy consumption in various ways. There are three categories of advanced cycle options: subcooling cycles, expansion loss recovery cycles and multi-stage cycles. The cycles selected for research are the suction line heat exchanger cycle, the expander cycle, the ejector cycle, and the vapor injection cycle. The cycles are modeled using Engineering Equation Solver and the results are applied to the LCCP methodology. The expander cycle, ejector cycle and vapor injection cycle are effective in reducing LCCP of a residential heat pump by 5.6%, 8.2% and 10.5%, respectively in Phoenix, AZ. The advanced cycles are evaluated with the use of low GWP refrigerants and are capable of reducing the LCCP of a residential heat by 13.7%, 16.3% and 18.6% using a refrigerant with a GWP of 10. To meet the U.S. Department of Energy’s goal of reducing residential energy use by 40% by 2025 with a proportional reduction in all other categories of residential energy consumption, a reduction in the energy consumption of a residential heat pump of 34.8% with a refrigerant GWP of 10 for Phoenix, AZ is necessary. A combination of advanced cycle, control options and low GWP refrigerants are necessary to meet this goal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last decade, success of social networks has significantly reshaped how people consume information. Recommendation of contents based on user profiles is well-received. However, as users become dominantly mobile, little is done to consider the impacts of the wireless environment, especially the capacity constraints and changing channel. In this dissertation, we investigate a centralized wireless content delivery system, aiming to optimize overall user experience given the capacity constraints of the wireless networks, by deciding what contents to deliver, when and how. We propose a scheduling framework that incorporates content-based reward and deliverability. Our approach utilizes the broadcast nature of wireless communication and social nature of content, by multicasting and precaching. Results indicate this novel joint optimization approach outperforms existing layered systems that separate recommendation and delivery, especially when the wireless network is operating at maximum capacity. Utilizing limited number of transmission modes, we significantly reduce the complexity of the optimization. We also introduce the design of a hybrid system to handle transmissions for both system recommended contents ('push') and active user requests ('pull'). Further, we extend the joint optimization framework to the wireless infrastructure with multiple base stations. The problem becomes much harder in that there are many more system configurations, including but not limited to power allocation and how resources are shared among the base stations ('out-of-band' in which base stations transmit with dedicated spectrum resources, thus no interference; and 'in-band' in which they share the spectrum and need to mitigate interference). We propose a scalable two-phase scheduling framework: 1) each base station obtains delivery decisions and resource allocation individually; 2) the system consolidates the decisions and allocations, reducing redundant transmissions. Additionally, if the social network applications could provide the predictions of how the social contents disseminate, the wireless networks could schedule the transmissions accordingly and significantly improve the dissemination performance by reducing the delivery delay. We propose a novel method utilizing: 1) hybrid systems to handle active disseminating requests; and 2) predictions of dissemination dynamics from the social network applications. This method could mitigate the performance degradation for content dissemination due to wireless delivery delay. Results indicate that our proposed system design is both efficient and easy to implement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The next generation of vehicles will be equipped with automated Accident Warning Systems (AWSs) capable of warning neighbouring vehicles about hazards that might lead to accidents. The key enabling technology for these systems is the Vehicular Ad-hoc Networks (VANET) but the dynamics of such networks make the crucial timely delivery of warning messages challenging. While most previously attempted implementations have used broadcast-based data dissemination schemes, these do not cope well as data traffic load or network density increases. This problem of sending warning messages in a timely manner is addressed by employing a network coding technique in this thesis. The proposed NETwork COded DissEmination (NETCODE) is a VANET-based AWS responsible for generating and sending warnings to the vehicles on the road. NETCODE offers an XOR-based data dissemination scheme that sends multiple warning in a single transmission and therefore, reduces the total number of transmissions required to send the same number of warnings that broadcast schemes send. Hence, it reduces contention and collisions in the network improving the delivery time of the warnings. The first part of this research (Chapters 3 and 4) asserts that in order to build a warning system, it is needful to ascertain the system requirements, information to be exchanged, and protocols best suited for communication between vehicles. Therefore, a study of these factors along with a review of existing proposals identifying their strength and weakness is carried out. Then an analysis of existing broadcast-based warning is conducted which concludes that although this is the most straightforward scheme, loading can result an effective collapse, resulting in unacceptably long transmission delays. The second part of this research (Chapter 5) proposes the NETCODE design, including the main contribution of this thesis, a pair of encoding and decoding algorithms that makes the use of an XOR-based technique to reduce transmission overheads and thus allows warnings to get delivered in time. The final part of this research (Chapters 6--8) evaluates the performance of the proposed scheme as to how it reduces the number of transmissions in the network in response to growing data traffic load and network density and investigates its capacity to detect potential accidents. The evaluations use a custom-built simulator to model real-world scenarios such as city areas, junctions, roundabouts, motorways and so on. The study shows that the reduction in the number of transmissions helps reduce competition in the network significantly and this allows vehicles to deliver warning messages more rapidly to their neighbours. It also examines the relative performance of NETCODE when handling both sudden event-driven and longer-term periodic messages in diverse scenarios under stress caused by increasing numbers of vehicles and transmissions per vehicle. This work confirms the thesis' primary contention that XOR-based network coding provides a potential solution on which a more efficient AWS data dissemination scheme can be built.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Com o aumento constante de procura de recursos naturais por parte dos vários setores da sociedade é urgente encontrar soluções para reduzir o seu consumo sem se travar a expansão demográfica que se tem vindo a sentir nos grandes centros urbanos. É através da implementação de medidas de sustentabilidade e pelo aumento da eficiência de utilização desses recursos que se tem vindo a combater esta tendência cada vez maior de consumismo global, sendo isto apenas possível com a implementação de ferramentas tecnológicas avançadas que permitem estabelecer limites ao considerado eficiente e premiando, em termos financeiros e de imagem de marketing, as entidades que o alcancem. O LEED é um sistema de certificação de sustentabilidade voluntário de edifícios residenciais e comerciais que estabelece métricas de comparação de parâmetros indicadores de consumos energéticos, hídricos e de materiais em todo o ciclo de vida do edifício e que tem vindo a ganhar destaque em crescendo a nível mundial. Esta dissertação teve como objetivo comparar a performance de consumo energético no âmbito do sistema LEED com a do sistema de certificação energética de edifícios nacional (SCE) de um grande edifício de serviços, estabelecendo um paralelismo de semelhanças e diferenças entre os dois e de avaliar os efeitos de potenciais medidas de eficiência energética e seus efeitos nas classificações de mérito obtidas em cada sistema. Os resultados obtidos na simulação que permitiu avaliar a performance foi muito satisfatório, tendo sido aproveitado pela empresa para efeitos de certificação LEED do edifício em estudo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) are the key enablers of the internet of things (IoT) paradigm. Traditionally, sensor network research has been to be unlike the internet, motivated by power and device constraints. The IETF 6LoWPAN draft standard changes this, defining how IPv6 packets can be efficiently transmitted over IEEE 802.15.4 radio links. Due to this 6LoWPAN technology, low power, low cost micro- controllers can be connected to the internet forming what is known as the wireless embedded internet. Another IETF recommendation, CoAP allows these devices to communicate interactively over the internet. The integration of such tiny, ubiquitous electronic devices to the internet enables interesting real-time applications. This thesis work attempts to evaluate the performance of a stack consisting of CoAP and 6LoWPAN over the IEEE 802.15.4 radio link using the Contiki OS and Cooja simulator, along with the CoAP framework Californium (Cf). Ultimately, the implementation of this stack on real hardware is carried out using a raspberry pi as a border router with T-mote sky sensors as slip radios and CoAP servers relaying temperature and humidity data. The reliability of the stack was also demonstrated during scalability analysis conducted on the physical deployment. The interoperability is ensured by connecting the WSN to the global internet using different hardware platforms supported by Contiki and without the use of specialized gateways commonly found in non IP based networks. This work therefore developed and demonstrated a heterogeneous wireless sensor network stack, which is IP based and conducted performance analysis of the stack, both in terms of simulations and real hardware.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless power transfer (WPT) and radio frequency (RF)-based energy har- vesting arouses a new wireless network paradigm termed as wireless powered com- munication network (WPCN), where some energy-constrained nodes are enabled to harvest energy from the RF signals transferred by other energy-sufficient nodes to support the communication operations in the network, which brings a promising approach for future energy-constrained wireless network design. In this paper, we focus on the optimal WPCN design. We consider a net- work composed of two communication groups, where the first group has sufficient power supply but no available bandwidth, and the second group has licensed band- width but very limited power to perform required information transmission. For such a system, we introduce the power and bandwidth cooperation between the two groups so that both group can accomplish their expected information delivering tasks. Multiple antennas are employed at the hybrid access point (H-AP) to en- hance both energy and information transfer efficiency and the cooperative relaying is employed to help the power-limited group to enhance its information transmission throughput. Compared with existing works, cooperative relaying, time assignment, power allocation, and energy beamforming are jointly designed in a single system. Firstly, we propose a cooperative transmission protocol for the considered system, where group 1 transmits some power to group 2 to help group 2 with information transmission and then group 2 gives some bandwidth to group 1 in return. Sec- ondly, to explore the information transmission performance limit of the system, we formulate two optimization problems to maximize the system weighted sum rate by jointly optimizing the time assignment, power allocation, and energy beamforming under two different power constraints, i.e., the fixed power constraint and the aver- age power constraint, respectively. In order to make the cooperation between the two groups meaningful and guarantee the quality of service (QoS) requirements of both groups, the minimal required data rates of the two groups are considered as constraints for the optimal system design. As both problems are non-convex and have no known solutions, we solve it by using proper variable substitutions and the semi-definite relaxation (SDR). We theoretically prove that our proposed solution method can guarantee to find the global optimal solution. Thirdly, consider that the WPCN has promising application potentials in future energy-constrained net- works, e.g., wireless sensor network (WSN), wireless body area network (WBAN) and Internet of Things (IoT), where the power consumption is very critical. We investigate the minimal power consumption optimal design for the considered co- operation WPCN. For this, we formulate an optimization problem to minimize the total consumed power by jointly optimizing the time assignment, power allocation, and energy beamforming under required data rate constraints. As the problem is also non-convex and has no known solutions, we solve it by using some variable substitutions and the SDR method. We also theoretically prove that our proposed solution method for the minimal power consumption design guarantees the global optimal solution. Extensive experimental results are provided to discuss the system performance behaviors, which provide some useful insights for future WPCN design. It shows that the average power constrained system achieves higher weighted sum rate than the fixed power constrained system. Besides, it also shows that in such a WPCN, relay should be placed closer to the multi-antenna H-AP to achieve higher weighted sum rate and consume lower total power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pierre Auger Cosmic Ray Observatory North site employs a large array of surface detector stations (tanks) to detect the secondary particle showers generated by ultra-high energy cosmic rays. Due to the rare nature of ultra-high energy cosmic rays, it is important to have a high reliability on tank communications, ensuring no valuable data is lost. The Auger North site employs a peer-to-peer paradigm, the Wireless Architecture for Hard Real-Time Embedded Networks (WAHREN), designed specifically for highly reliable message delivery over fixed networks, under hard real-time deadlines. The WAHREN design included two retransmission protocols, Micro- and Macro- retransmission. To fully understand how each retransmission protocol increased the reliability of communications, this analysis evaluated the system without using either retransmission protocol (Case-0), both Micro- and Macro-retransmission individually (Micro and Macro), and Micro- and Macro-retransmission combined. This thesis used a multimodal modeling methodology to prove that a performance and reliability analysis of WAHREN was possible, and provided the results of the analysis. A multimodal approach was necessary because these processes were driven by different mathematical models. The results from this analysis can be used as a framework for making design decisions for the Auger North communication system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increases in oil prices after the economic recession have been surprising for domestic oil production in the United States since the beginning of 2009. Not only did the conventional oil extraction increase, but unconventional oil production and exploration also improved greatly with the favorable economic conditions. This favorable economy encourages companies to invest in new reservoirs and technological developments. Recently, enhanced drilling techniques including hydraulic fracturing and horizontal drilling have been supporting the domestic economy by way of unconventional shale and tight oil from various U.S. locations. One of the main contributors to this oil boom is the unconventional oil production from the North Dakota Bakken field. Horizontal drilling has increased oil production in the Bakken field, but the economic issues of unconventional oil extraction are still debatable due to volatile oil prices, high decline rates of production, a limited production period, high production costs, and lack of transportation. The economic profitability and viability of the unconventional oil play in the North Dakota Bakken was tested with an economic analysis of average Bakken unconventional well features. Scenario analysis demonstrated that a typical North Dakota Bakken unconventional oil well is profitable and viable as shown by three financial metrics; net present value, internal rate of return, and break-even prices.