466 resultados para Wetting


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die vorliegende Forschungsarbeit behandelt konfokalmikroskopische Untersuchungen zur Strukturbildung in kolloidalen Suspensionen, die als experimentelles Modellsystem für harte Kugeln verwendet werden. Die lokale und globale Struktur wurde im stabilen und metastabilen Fluid bestimmt. Bereits unterhalb des Gefriervolumenbruchs wurden nah-geordnete Cluster vorgefunden, die mit zunehmendem Volumenbruch häufiger und größer werden. Das Kristallwachstum aus der metastabilen kolloidalen Schmelze konnte quantitativ analysiert werden und es zeigt sich eine Übereinstimmung mehrerer Kenngrößen mit Literaturdaten nahe dem Schmelzvolumenbruch. Die Untersuchung demonstrierte die Realisierbarkeit der quantitativen Analyse der Kristallisationskinetik mittels konfokaler Mikroskopie. Es zeigte sich ein mehrstufiges Nukleationsszenario bei dem zuerst nah-geordnete Cluster gebildet werden, die im weiteren Verlauf zu kristall-artigen Clustern transformieren. Die Beobachtungen belegen den Mechanismus der Precursornukleation in Hartkugelsystemen. Die heterogene Nukleation wurde an glatten und an hexagonal strukturierten Substraten untersucht. Anhand der Kristallisationskinetik und der direkten Messung der Benetzungswinkel konnte ein Übergang des Benetzungsverhaltens unter Variation des Substratgitterabstands nachgewiesen werden: An glatten und an kommensurabel strukturierten Substraten zeigten sich eine vollständige Bedeckung des Substrats mit der kristallinen Phase und ein sofortiges unidirektionales Wachstum. Bei inkommensurabel strukturierten Substraten wurde eine unvollständige Bedeckung des strukturierten Substrats mit der kristallinen Phase sowie ein verzögertes isotropes Wachstum bei fortwährender Kristallnukleation beobachtet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

White spot lesion (WSL) infiltration has been recommended immediately after debonding of orthodontic brackets. It is however not clear if established inactive WSLs can also be masked through infiltrationOrthodontic treatment of a 19-year-old patient had to be terminated prematurely due to development of multiple WSLs of varying severity. Three months after debonding, the patient presented for lesion infiltration. After etching with 15% HCl gel and re-wetting of the dried surfaces it seemed that a good outcome could be expected. Lesion infiltration led to complete masking of less severe WSLs. The visual appearance of moderate and severe WSLs was improved but they were still visible after treatment.Inactive WSLs may not represent an increased caries risk, but patients are often bothered esthetically. Infiltration by repeated etching might be a viable approach even for inactive WSLs. Controlled clinical trials are needed to investigate the long-term performance of this technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was conducted to assess the interrelation between teat anatomy and machine milking in dairy buffaloes raised in Switzerland. A 3-min pre-stimulation induced milk ejection before cluster attachment in most cases and caused an optimal milk removal during machine milking. In an additional experiment, longitudinal cross-section ultrasound was obtained before and after a 3-min pre-stimulation. Teat wall thickness, teat diameter, cisternal diameter and teat canal length were evaluated. It was observed that 3-min pre-stimulation dramatically reduced teat canal length whereas all the other anatomical parameters remained unchanged. The vacuum needed to open the teat canal was also measured before and after a 3-min pre-stimulation by using a special teat cup with only the mouthpiece of the liner remaining on the top of the teat cup (no liner, no pulsation). Without pre-stimulation but after wetting the teat canal by stripping one squirt of milk out of the teat, no milk could be withdrawn with a vacuum up to 39 kPa. However, after pre-stimulation, milk flow occurred in all buffaloes at a vacuum between 16 and 38 kPa. In the last experiment, the teat tissue was examined in slaughtered buffaloes and compared with teat tissue of cows. No difference was noted in histological sections and teat canal length was similar in cows and buffaloes. Proximal to the teat canal, the teat did not pass into an open cistern but the lumen was collapsed. In conclusion, buffaloes need to be well pre-stimulated because the tissue above the teat canal provides additional teat closure before milk ejection. Therefore, milk can only be obtained after pre-stimulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an experimental and numerical study examining the dynamics of a gravity-driven contact line of a thin viscous film traveling down the outside of a vertical cylinder of radius R. Experiments on cylinders with radii ranging between 0.159 and 3.81 cm show that the contact line is unstable to a fingering pattern for two fluids with differing viscosities, surface tensions, and wetting properties. The dynamics of the contact line is studied and results are compared to previous studies of inclined plane experiments in order to understand the influence substrate curvature plays on the fingering pattern. A lubrication model is derived for the film height in the limit that ε = H/R≪1, where H is the upstream film thickness, and in terms of a Bond number ρgR3/(γH), and the linear stability of the contact line is analyzed using traveling wave solutions. Curvature controls the capillary ridge height of the traveling wave and the range of unstable wavelength when ε = O(10-1), whereas the shape and stability of the contact line converge to the behavior one observes on a vertical plane when ε ≤ O(10-2). The most unstable wave mode, cutoff wave mode for neutral stability, and maximum growth rate scale as 0.45 where = ρgR2/γ ≥ 1.3, and the contact line is unstable to fingering when ≥ 0.56. Using the experimental data to extrapolate outside the range of validity of the thin film model, we estimate the contact line is stable when <0.56. Agreement is excellent between the model and the experimental data for the wave number (i.e., number of fingers) and wavelength of the fingering pattern that forms along the contact line.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrous oxide fluxes were measured at the Lägeren CarboEurope IP flux site over the multi-species mixed forest dominated by European beech and Norway spruce. Measurements were carried out during a four-week period in October–November 2005 during leaf senescence. Fluxes were measured with a standard ultrasonic anemometer in combination with a quantum cascade laser absorption spectrometer that measured N2O, CO2, and H2O mixing ratios simultaneously at 5 Hz time resolution. To distinguish insignificant fluxes from significant ones it is proposed to use a new approach based on the significance of the correlation coefficient between vertical wind speed and mixing ratio fluctuations. This procedure eliminated roughly 56% of our half-hourly fluxes. Based on the remaining, quality checked N2O fluxes we quantified the mean efflux at 0.8±0.4 μmol m−2 h−1 (mean ± standard error). Most of the contribution to the N2O flux occurred during a 6.5-h period starting 4.5 h before each precipitation event. No relation with precipitation amount could be found. Visibility data representing fog density and duration at the site indicate that wetting of the canopy may have as strong an effect on N2O effluxes as does below-ground microbial activity. It is speculated that above-ground N2O production from the senescing leaves at high moisture (fog, drizzle, onset of precipitation event) may be responsible for part of the measured flux.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rehabilitation of concrete structures, especially concrete bridge decks, is a major challenge for transportation agencies in the United States. Often, the most appropriate strategy to preserve or rehabilitate these structures is to provide some form of a protective coating or barrier. These surface treatments have typically been some form of polymer, asphalt, or low-permeability concrete, but the application of UHPC has shown promise for this application mainly due to its negligible permeability, but also as a result of its excellent mechanical properties, self-consolidating nature, rapid gain strength, and minimal creep and shrinkage characteristics. However, for widespread acceptance, durability and performance of the composite system must be fully understood, specifically the bond between UHPC and NSC often used in bridge decks. It is essential that the bond offers enough strength to resist the stress due to mechanical loading or thermal effects, while also maintaining an extended service-life performance. This report attempts to assess the bond strength between UHPC and NSC under different loading configurations. Different variables, such as roughness degree of the concrete substrates, age of bond, exposure to freeze-thaw cycles and wetting conditions of the concrete substrate, were included in this study. The combination of splitting tensile test with 0, 300, 600 and 900 freeze-thaw cycles was carried out to assess the bond performance under severe ambient conditions. The slant-shear test was utilized with different interface angles to provide a wide understanding of the bond performance under different combinations of compression and shear stresses. The pull-off test is the most accepted method to evaluate the bond strength in the field. This test which studies the direct tensile strength of the bond, the most severe loading condition, was used to provide data that can be correlated with the other tests that only can be used in the laboratory. The experimental program showed that the bond performance between UHPC and NSC is successful, as the strength regardless the different degree of roughness of the concrete substrate, the age of the composite specimens, the exposure to freeze-thaw cycles and the different loading configurations, is greater than that of concrete substrate and largely satisfies with ACI 546.3R-06.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In-service hardened concrete pavement suffers from environmental loadings caused by curling and warping of the slab. Traditionally, these loadings are computed on the basis of treating the slab as an elastic material, and of evaluating separately the curling and warping components. This dissertation simulates temperature distribution and moisture distribution through the slabs by use of a developed numerical model that couples the heat transfer and moisture transport. The computation of environmental loadings treats the slab as an elastic-viscous material, which considers the relaxation behavior and Pickett effect of the concrete. The heat transfer model considers the impacts of solar radiation, wind speed, air temperature, pavement slab albedo, etc. on the pavement temperature distribution. This dissertation assesses the difference between documented models that aim to predict pavement temperature, highlighting their pros and cons. The moisture transport model is unique for the documented models; it mimics the wetting and drying events occurring at the slab surface. These events are estimated by a proposed statistical algorithm, which is verified by field rainfall data. Analysis of the predicted results examines on the roles of the local air RH (relative humidity), wind speed, rainy pattern in the moisture distribution through the slab. The findings reveal that seasonal air RH plays a decisive role on the slab‘s moisture distribution; but wind speed and its daily variation, daily RH variation, and seasonal rainfall pattern plays only a secondary role. This dissertation sheds light on the computation of environmental loadings that in-service pavement slabs suffer from. Analysis of the computed stresses centers on the stress relaxation near the surface, stress evolution after the curing ends, and the impact of construction season on the stress‘s magnitude. An unexpected finding is that the total environmental loadings at the cyclically-stable state divert from the thermal stresses. At such a state, the total stress at the daytime is roughly equal to the thermal stress; whereas the total stress during the nighttime is far greater than the thermal stress. An explanation for this phenomenon is that during the night hours, the decline of the slab‘s near-surface temperature leads to a drop of the near-surface RH. This RH drop results in contraction therein and develops additional tensile stresses. The dissertation thus argues that estimating the environmental loadings by solely computing the thermally-induced stresses may reach delusive results. It recommends that the total environmental loadings of in-service slabs should be estimated by a sophisticated model coupling both moisture component and temperature component.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this paper is to furnish a qualitative method of comparing the degree of wetting of various solders upon different plate metals when several fluxes are used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The existence and morphology, as well as the dynamics of micro-scale gas-liquid interfaces is investigated numerically and experimentally. These studies can be used to assess liquid management issues in microsystems such as PEMFC gas flow channels, and are meant to open new research perspectives in two-phase flow, particularly in film deposition on non-wetting surfaces. For example the critical plug volume data can be used to deliver desired length plugs, or to determine the plug formation frequency. The dynamics of gas-liquid interfaces, of interest for applications involving small passages (e.g. heat exchangers, phase separators and filtration systems), was investigated using high-speed microscopy - a method that also proved useful for the study of film deposition processes. The existence limit for a liquid plug forming in a mixed wetting channel is determined by numerical simulations using Surface Evolver. The plug model simulate actual conditions in the gas flow channels of PEM fuel cells, the wetting of the gas diffusion layer (GDL) side of the channel being different from the wetting of the bipolar plate walls. The minimum plug volume, denoted as critical volume is computed for a series of GDL and bipolar plate wetting properties. Critical volume data is meant to assist in the water management of PEMFC, when corroborated with experimental data. The effect of cross section geometry is assessed by computing the critical volume in square and trapezoidal channels. Droplet simulations show that water can be passively removed from the GDL surface towards the bipolar plate if we take advantage on differing wetting properties between the two surfaces, to possibly avoid the gas transport blockage through the GDL. High speed microscopy was employed in two-phase and film deposition experiments with water in round and square capillary tubes. Periodic interface destabilization was observed and the existence of compression waves in the gas phase is discussed by taking into consideration a naturally occurring convergent-divergent nozzle formed by the flowing liquid phase. The effect of channel geometry and wetting properties was investigated through two-phase water-air flow in square and round microchannels, having three static contact angles of 20, 80 and 105 degrees. Four different flow regimes are observed for a fixed flow rate, this being thought to be caused by the wetting behavior of liquid flowing in the corners as well as the liquid film stability. Film deposition experiments in wetting and non-wetting round microchannels show that a thicker film is deposited for wetting conditions departing from the ideal 0 degrees contact angle. A film thickness dependence with the contact angle theta as well as the Capillary number, in the form h_R ~ Ca^(2/3)/ cos(theta) is inferred from scaling arguments, for contact angles smaller than 36 degrees. Non-wetting film deposition experiments reveal that a film significantly thicker than the wetting Bretherton film is deposited. A hydraulic jump occurs if critical conditions are met, as given by a proposed nondimensional parameter similar to the Froude number. Film thickness correlations are also found by matching the measured and the proposed velocity derived in the shock theory. The surface wetting as well as the presence of the shock cause morphological changes in the Taylor bubble flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent geomorphological observations as well as chemical and thermodynamic studies demonstrate that liquid water should be stable today on the Martian surface at some times of the day. In Martian conditions, brines would be particularly more stable than pure water because salts can depress the freezing point and lower the evaporation rate of water. Despite this evidence, no clear spectral signature of liquid has been observed so far by the hyperspectral imaging spectrometers OMEGA and CRISM. However, past spectral analysis lacks a good characterization of brines׳ spectral signatures. This study thus aims to determine how liquid brines can be detected on Mars by spectroscopy. In this way, laboratory experiments were performed for reproducing hydration and dehydration cycles of various brines while measuring their spectral signatures. The resulting spectra first reveal a very similar spectral evolution for the various brine types and pure water, with the main difference observed at the end of the dehydration with the crystallization of various hydrated minerals from brines. The main characteristic of this spectral behavior is an important decoupling between the evolution of albedo and hydration bands depths. During most of the wetting/drying processes, spectra usually display a low albedo associated with shallow water absorption band depths. Strong water absorption band depth and high albedo are respectively only observed when the surface is very wet and when the surface is very dry. These experiments can thus explain why the currently active Martian features attributed to the action of a liquid are only associated with low albedo and very weak spectral signatures. Hydration experiments also reveal that deliquescence occurs easily even at low temperature and moderate soil water vapor pressure and could thus cause seasonal darkening on Mars. These experiments demonstrate that the absence of water absorptions in CRISM in the middle afternoon does not rule out water activity and suggest future spectral investigations to identify water on the Martian surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of polymer modification on the physical properties of cementitious mortars is investigated using a multimethod approach. Special emphasis is put on the identification and quantification of different polymer components within the cementitious matrix. With respect to thin-bed applications, particularly tile adhesives, the spatial distributions of latex, cellulose ether (CE), polyvinyl alcohol (PVA), and cement hydration products can be quantified. It is shown that capillary forces and evaporation induce water fluxes in the interconnected part of the pore system, which transport CE, PVA, and cement ions to the mortar interfaces. In contrast, the distribution of latex remains homogeneous. In combination with results from qualitative experiments, the quantitative findings allow reconstruction of the evolution from fresh to hardened mortar, including polymer film formation, cement hydration, and water migration. The resulting microstructure and the failure modes can be correlated with the final adhesive strength of the tile adhesive. The results demonstrate that skinning prior to tile inlaying can strongly reduce wetting properties of the fresh mortar and lower final adhesive strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lake sediments and pollen, spores and algae from the high-elevation endorheic Laguna Miscanti (22°45′S, 67°45′W, 4140 m a.s.l., 13.5 km2 water surface, 10 m deep) in the Atacama Desert of northern Chile provide information about abrupt and high amplitude changes in effective moisture. Although the lack of terrestrial organic macrofossils and the presence of a significant 14C reservoir effect make radiocarbon dating of lake sediments very difficult, we propose the following palaeoenvironmental history. An initial shallow freshwater lake (ca. 22,000 14C years BP) disappeared during the extremely dry conditions of the Last Glacial Maximum (LGM; 18,000 14C years BP). That section is devoid of pollen. The late-glacial lake transgression started around 12,000 14C years BP, peaked in two phases between ca. 11,000 and <9000 14C years BP, and terminated around 8000 14C years BP. Effective moisture increased more than three times compared to modern conditions (∼200 mm precipitation), and a relatively dense terrestrial vegetation was established. Very shallow hypersaline lacustrine conditions prevailed during the mid-Holocene until ca. 3600 14C years BP. However, numerous drying and wetting cycles suggest frequent changes in moisture, maybe even individual storms during the mid-Holocene. After several humid spells, modern conditions were reached at ca. 3000 14C years BP. Comparison between limnogeological data and pollen of terrestrial plants suggest century-scale response lags. Relatively constant concentrations of long-distance transported pollen from lowlands east of the Andes suggest similar atmospheric circulation patterns (mainly tropical summer rainfall) throughout the entire period of time. These findings compare favorably with other regional paleoenvironmental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infiltration is dominantly gravity driven, and a viscous-flow approach was developed. Laminar film flow equilibrates gravity with the viscous force and a constant flow velocity evolves during a period lasting 3/2 times the duration of a constant input rate, qS. Film thickness F and the specific contact area L of the film per unit soil volume are the key parameters. Sprinkler irrigation produced in situ time series of volumetric water contents, θ(z,t), as determined with TDR probes. The wetting front velocity v and the time series of the mobile water content, w(z,t) were deduced from θ(z,t). In vitro steady flow in a core of saturated soil provided volume flux density, q(z,t), and flow velocity, v, as determined from a heat front velocity. The F and L parameters of the in situ and the in vitro experiments were compared. The macropore-flow restriction states that, for a particular permeable medium, the specific contact area L must be independent from qS i.e., dL/dqS = 0. If true, then the relationship of qS ∝ v3/2 could scale a wide range of input rates 0 ≤ qS ≤ saturated hydraulic conductivity, Ksat, into a permeable medium, and kinematic-wave theory would become a versatile tool to deal with non-equilibrium flow. The viscous-flow approach is based on hydromechanical principles similar to Darcy’s law, but currently it is not suited to deduce flow properties from specified individual spatial structures of permeable media.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent works (Evelpidou et al., 2012) suggest that the modern tidal notch is disappearing worldwide due sea level rise over the last century. In order to assess this hypothesis, we measured modern tidal notches in several of sites along the Mediterranean coasts. We report observations on tidal notches cut along carbonate coasts from 73 sites from Italy, France, Croatia, Montenegro, Greece, Malta and Spain, plus additional observations carried outside the Mediterranean. At each site, we measured notch width and depth, and we described the characteristics of the biological rim at the base of the notch. We correlated these parameters with wave energy, tide gauge datasets and rock lithology. Our results suggest that, considering 'the development of tidal notches the consequence of midlittoral bioerosion' (as done in Evelpidou et al., 2012) is a simplification that can lead to misleading results, such as stating that notches are disappearing. Important roles in notch formation can be also played by wave action, rate of karst dissolution, salt weathering and wetting and drying cycles. Of course notch formation can be augmented and favoured also by bioerosion which can, in particular cases, be the main process of notch formation and development. Our dataset shows that notches are carved by an ensemble rather than by a single process, both today and in the past, and that it is difficult, if not impossible, to disentangle them and establish which one is prevailing. We therefore show that tidal notches are still forming, challenging the hypothesis that sea level rise has drowned them.