473 resultados para Welded Seam


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental investigations were carried out using a Nd:YAG laser operating in pulsed mode for welding a lap joint between thin foil and thick sheet. The pulse energy was varied from 1.5 to 3.0 J at increments of 0.25 J with a 4 ms pulse duration. The base material used for this study was AISI 316L foils with 100 mu m thickness and sheet with 3.0 mm thickness. The welds were analysed by optical and electronic microscopy, tensile shear tests and micro hardness. The results indicate that pulse energy control is of considerable importance to join thin foil and thick sheet with good quality. The ultimate tensile strength of the welded joints increased at first and then decreased as the pulse energy increased. The process appeared to be very sensitive to the gap between couples. Large voids delimited by the molten zone boundary were observed in joints welded with high pulse energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to value the possibility to join, for pulsed Nd:YAG laser welding, thin foils lap joints for sealing components in corrosive environment. Experimental investigations were carried out using a pulsed neodymium: yttrium aluminum garnet laser weld to examine the influence of the pulse energy in the characteristics of the weld fillet. The pulse energy was varied from 1.0 to 2.5 J at increments of 0.25 J with a 4 ms pulse duration. The base materials used for this study were AISI 316L stainless steel and Ni-based alloys foils with 100 mu m thickness. The welds were analyzed by electronic and optical microscopy, tensile shear tests and micro hardness. The results indicate that pulse energy control is of considerable importance to thin foil weld quality because it can generate good mechanical properties and reduce discontinuities in weld joints. The ultimate tensile strength of the welded joints increased at first and then decreased as the pulse energy increased. In all the specimens, fracture occurred in the top foil heat-affected zone next to the fusion line. The microhardness was almost uniform across the parent metal, HAZ and weld metal. A slight increase in the fusion zone and heat-affected zone compared to those measured in the base metal was observed. This is related to the microstructural refinement in the fusion zone, induced by rapid cooling of the laser welding. The process appeared to be very sensitive to the gap between couples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research project focused primarily on assessing the impact toughness of the weld and the base material of a steel pipe API 5L X70 submerged arc welded, used to conduct remote oil and gas (linepipes). The analysis followed strictly the Specification for Line Pipe - API 5L Standard, regarding the removal of the specimens of regions-of-proof-long section of the pipe, at 90o and 180o from the welded joint, and mechanical properties of toughness and Charpy-V, both the joint welded as the base material. Specimens of steel tube supplied by Tenaris Confab-SA were sized for tensile and Charpy-V, according to ASTM E 8M and ASTM E23, respectively. The result obtained showed that the API X70 steel tube has high Charpy-V toughness, near to each other at both 90o and 180o from the welded joint of the tube, and both higher than the weld metal. Microstructural and microhardness analysis complemented the present study

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The process of electric arc welding with shielding gas (GMAW) is being increasingly used in various industrial applications. This process occurs by which an electric arc is established between the work piece and a consumable in the form of wire, the arc melts the wire continuously as it is fed to the weld pool. The weld metal is protected from the atmosphere by flowing a gas (or gas mixture) inert or active. This paper presents a study of the welding process GMAW - MIG on aluminum tubes, alloy 6101 - T6, used in the manufacture of armored busbar, intended for driving electric power plants. 5(five) were welded specimens, changing certain welding parameters at each time was monitored welding joint as well as the interpass temperature. Tests were performed bending, tensile and macrographical analysis of body-of-evidence and through its results was possible to reach a better welding condition, which minimizes the appearance of pores, since the porosity has great influence on the mechanical strength and electrical conductivity of welded pipes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When a bolted joint is loaded in tension with dynamically, part of this load is absorbed by the bolt and rest is absorbed by the joint material. What determines the portion that is to absorbed by the bolt is the joint stiffness factor. This factor influences the tension which corresponds to pre-load and the safety factor for fatigue failure, thus being an important factor in the design of bolted joints. In this work, three methods of calculating the stiffness factor are compared through a spreadsheet in Excel software. The ratio of initial pre-load and the safety factor for fatigue failure depending on the stiffness factor graph is generated. The calculations for each method show results with a small difference. It is therefore recommended that each project case is analyzed, and depending on its conditions and the range of stiffness values, the more or less rigid method about the safety factor for fatigue failure is chosen. In general, the approximation method provides consistent results and can be easily calculated

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of the great metallurgical advances, the welded tubes by HF / ERW (High Frequency / Electrical Resistance Welding) have played a more active role in the oil and gas, gradually replacing tubes produced by other processes (UOE, SAW, and others) to deep water applications, in high and extremely low temperatures, highpressure conditions and in highly corrosive environments. However, studies have revealed that defects in the welded joints are in one of main causes of failures in pipelines. Associated with damage external and the stringent requirements of this sector, the welded joints become particularly critical for his toughness and the determination of this particular property is fundamental. This study aims to evaluate the toughness of the HF / ERW pipes in HSLA steel API X70 class, used in pipelines transport systems of gas and oil from data obtained with CTOD tests (Crack Tip Opening Displacement). The main objectives of this project are: mechanical and microstructural characterization of steels API X70 manufactured in Brazil; and evaluation of the toughness of weld process by HF / ERW steel API X70 national. After having the tests done, mechanical, chemical and metallurgical, we have the conclusion that those pipe are in agreement to API 5L 42ª edition for X70MO and the toughness behaves like the expected

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies about structural integrity are very important when it desires to prevent disasters associated with flaws inherent in materials used in structural components. The welded joints in steel pipes used to conduction and distribution of oil and gas correspond to the regions most susceptible to flaw. Aiming to contribute to this research line, the present study was designed to assess experimentally the structural integrity of welded joints in steel pipes API 5L X70 used in pipeline systems. This assessment is given from tests of CTOD, whose aim is simulate in laboratory the real behaviour of crack from of his propagation on the welded joint obtained by high frequency electric resistance welding. In this case, the analyses are performed from specimens SE(B) obtained directly of steel pipe API 5L X70. The proposed methodology involves tests of CTOD at lower temperature, in order to assess the toughness of material in critical operation conditions. From performance of CTOD tests, was possible assess the toughness of welded joints in terms of quantity through CTOD parameter and in terms of quality from behaviour of curve load versus CMOD. In this study, also, sought to compare CTOD’s results obtained through rules ASTM E1820 (2008) and BS 7448 (1991). Although the two standards cited previously have adopted different parameters to calculated the value of CTOD, concluded that the values of CTOD tend to converge for a common value

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To perform the quality control of various industries like: petrochemical, nuclear, aerospace, steel, shipbuilding, pulp and paper, and inspection of welded products, castings, forgings, rolled products, among others, used the method of Non-Destructive Testing (NDT). The method is based on the physical properties of the material, so selecting a procedure more appropriate. The company Inter-Metro Serviços Especiais Ltda., with its cutting-edge laboratory, dedicated to the implementation of calibration services and measurement equipment for industrial, medical, occupational safety and Non-Destructive Testing (NDT). It has a trained team, providing guidance and providing support for improving procedures for testing and measuring

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the grounds of the great advances achieved over recent years, the process HF/ERW (High-Frequency/Electric Resistance Welding)welded pipe have played an active role in the oil and gas industry for deep water applications, at high and extremely low temperatures, under high pressure and in highly corrosive environments, gradually replacing manufactured pipes by other processes. However, studies have shown that defects in the welded joints are a the leading causes of pipelines failures, which has required the determination of toughness values in this region, in compliance with the strict recommendations of the codes and standards with manufacturers and construction companies, on the oil and gas sector. As part of the validation process required toughness values, this research project focuses on a microstructural analysis in HF / ERW tubes microalloyed, steel grade API 5CT P110, designed to explore oil and gas in deep waters, the subject of strategic relevance to the country because of the recent discoveries in the Santos mega fields: Tupi and Libra (pre-salt). In this scientific work will be presented and discussed the results of mechanical tensile and Charpy, a few CTOD tests curves (showing the trend of toughness values to be obtained), and the microstructures of the base material obtained by optical microscopy, with special emphasis on the formation of nonmetallic inclusions in the welded joint

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to analyze the toughness of a welded joint in the presence of a crack through the analysis of maximum tension the material can withstand the presence of this type of defect, since a discontinuity is likely to occur in this type of joint and its detection and its design is simple, using non-destructive testing techniques. The study will be conducted through the CTOD test - Crack-Tip Opening Displacement, with type specimens SE (B) - Single Edge Bend taken from a weld in the L-C position in relation to the length (longitudinal axis) of a test tube. The main idea is to simulate the welding conditions for the manufacture of industrial pipes, made in boiler shops (pipe-shop) within petrochemical plants. These pipes are often subject to operation with flammable and toxic subjected to high pressures and temperatures, where one can break the line can cause irreparable damage to the plant, the environment and the health of surrounding communities. With this study we evaluate whether the weld metal has the same properties as fracture toughness of the base material. This study shows the importance of using a qualified welding procedure for performing quality welds while maintaining the properties of the fracture toughness of the base metal. It was found from the results of tests using a welding procedure described for carrying out welding ensures mechanical properties very close to the base metal, which in terms of design is great, since one can ensure that the weld will the same characteristics of the base metal specified for the assembly of the pipe

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work examines the possible effects of successive repair procedures on the microstructure of welded steel SAE 4130 by TIG welding process. Discussions and results were made about the metallographic analysis , non-metallic inclusions and microhardness tests , which were conducted on samples taken from the cradle engine component after the end of its life , a model airplane T-27 Tucano , made by EMBRAER and belonging were performed FAB . The choice of such component is due to the fact that this is critical to flight safety since it provides support for the aircraft engine . Thus regions of the weld metal , base metal and heat affected , with samples of the original weld bead , free of weld bead and also with four rework procedures for TIG welding zone were analyzed . It was found that after the fourth rework there is an increase in the amount of martensite , which may weaken the material with respect to resistance to fatigue. It was also found that the regions of the heat affected zone and weld metal have higher microhardness values when compared to those found in the base metal due to favoring the formation of ferritic and tempered martensite microstructures . Moreover, a welding process promotes a region with less non-metallic inclusions than metal base , which also explains the difference in the results obtained

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Airplane Motor Cradles have a complex geometry, since they require different conbinations between different tubes and TIG welded in several angles. In T-25 aircraft and Universal T-27 Tucano (EMBRAER / FAB), besides having to bear the engine balance, these components maintain fixed the nose landing gear in another extremity. They are considered critical to flight safety, and for this reason, the aviation standards are extremely rigid in their production, imposing a zero index” of defects on the final weld metal quality. These structures may be containing an historical of welding repairs, whose effects on their structural integrity are not computed. In this work we analyzed the standardised AISI 4130 steel and the raw steel of tubes to the Airplane Motor Cradles. First of all, microscopy and microanalysis of the base steel, then we analyzed the effects of the TIG weld. Tensile testing was conducted to measure the difference between the mechanical properties of standardised steel and without this treatment