993 resultados para Weak interactions (Nuclear physics)
Resumo:
We derive analytical expressions for the excitation energy of the isoscalar giant monopole and quadrupole resonances in finite nuclei, by using the scaling method and the extended ThomasFermi approach to relativistic mean-field theory. We study the ability of several nonlinear σω parameter sets of common use in reproducing the experimental data. For monopole oscillations the calculations agree better with experiment when the nuclear matter incompressibility of the relativistic interaction lies in the range 220260 MeV. The breathing-mode energies of the scaling method compare satisfactorily with those obtained in relativistic RPA and time-dependent mean-field calculations. For quadrupole oscillations, all the analyzed nonlinear parameter sets reproduce the empirical trends reasonably well.
Resumo:
By using the scaling method we derive the virial theorem for the relativistic mean field model of nuclei treated in the ThomasFermi approach. The ThomasFermi solutions statisfy the stability condition against scaling. We apply the formalism to study the excitation energy of the breathing mode in finite nuclei with several relativistic parameter sets of common use.
Resumo:
In this paper, a remote O2 ion source is used for the formation of nano-oxide layers. The oxidation efficiency was measured in CoFe-oxide films, and a decrease of the oxide layer with the pan angle and the oxidation pressure is observed. For the same oxidation pressure, the oxidation efficiency depends on the O2 content in the Ar-O2 plasma. These results were applied in optimizing the fabrication of Al2O3 barrier for tunnel junctions. This method was also used to fabricate junctions with Fe-oxide layers inserted at the Al2O3-CoFe interface. TEM and magnetization data indicate that after anneal at 385°C, a homogeneous ferromagnetic Fe-oxide layer (Fe3O4?) is formed.
Resumo:
We study the collision of a gravitational wave pulse and a soliton wave on a spatially homogeneous background. This collision is described by an exact solution of Einsteins equations in a vacuum which is generated from a nondiagonal seed by means of a soliton transformation. The effect produced by the soliton on the amplitude and polarization of the wave is considered.
Resumo:
A covariant formalism is developed for describing perturbations on vacuum domain walls and strings. The treatment applies to arbitrary domain walls in (N+1)-dimensional flat spacetime, including the case of bubbles of a true vacuum nucleating in a false vacuum. Straight strings and planar walls in de Sitter space, as well as closed strings and walls nucleating during inflation, are also considered. Perturbations are represented by a scalar field defined on the unperturbed wall or string world sheet. In a number of interesting cases, this field has a tachyonic mass and a nonminimal coupling to the world-sheet curvature.
Resumo:
We develop a covariant quantum theory of fluctuations on vacuum domain walls and strings. The fluctuations are described by a scalar field defined on the classical world sheet of the defects. We consider the following cases: straight strings and planar walls in flat space, true vacuum bubbles nucleating in false vacuum, and strings and walls nucleating during inflation. The quantum state for the perturbations is constructed so that it respects the original symmetries of the classical solution. In particular, for the case of vacuum bubbles and nucleating strings and walls, the geometry of the world sheet is that of a lower-dimensional de Sitter space, and the problem reduces to the quantization of a scalar field of tachyonic mass in de Sitter space. In all cases, the root-mean-squared fluctuation is evaluated in detail, and the physical implications are briefly discussed.
Resumo:
Nucleation rates for tunneling processes in Minkowski and de Sitter space are investigated, taking into account one loop prefactors. In particular, we consider the creation of membranes by an antisymmetric tensor field, analogous to Schwinger pair production. This can be viewed as a model for the decay of a false (or true) vacuum at zero temperature in the thin wall limit. Also considered is the spontaneous nucleation of strings, domain walls, and monopoles during inflation. The instantons for these processes are spherical world sheets or world lines embedded in flat or de Sitter backgrounds. We find the contribution of such instantons to the semiclassical partition function, including the one loop corrections due to small fluctuations around the spherical world sheet. We suggest a prescription for obtaining, from the partition function, the distribution of objects nucleated during inflation. This can be seen as an extension of the usual formula, valid in flat space, according to which the nucleation rate is twice the imaginary part of the free energy. For the case of pair production, the results reproduce those that can be obtained using second quantization methods, confirming the validity of instanton techniques in de Sitter space. Throughout the paper, both the gravitational field and the antisymmetric tensor field are assumed external.
Resumo:
We use the method of Bogolubov transformations to compute the rate of pair production by an electric field in (1+1)-dimensional de Sitter space. The results are in agreement with those obtained previously using the instanton methods. This is true even when the size of the instanton is comparable to the size of the de Sitter horizon.
Resumo:
We obtain the photon spectrum induced by a cosmic background of unstable neutrinos. We study the spectrum in a variety of cosmological scenarios and also we allow for the neutrinos having a momentum distribution (only a critical matter-dominated universe and neutrinos at rest have been considered until now). Our results can be helpful when extracting bounds on neutrino electric and magnetic moments from cosmic photon background observations.
Resumo:
We obtain new stringent constraints on a light spinless particle f coupled only to photons at low energies, considering its effects on the extragalactic photon background, the black-body spectrum of the cosmic microwave background radiation and the cosmological abundance of deuterium.