1000 resultados para Wayland (Mass.)--Maps
Resumo:
This thesis describes current and past n-in-one methods and presents three early experimental studies using mass spectrometry and the triple quadrupole instrument on the application of n-in-one in drug discovery. N-in-one strategy pools and mix samples in drug discovery prior to measurement or analysis. This allows the most promising compounds to be rapidly identified and then analysed. Nowadays properties of drugs are characterised earlier and in parallel with pharmacological efficacy. Studies presented here use in vitro methods as caco-2 cells and immobilized artificial membrane chromatography for drug absorption and lipophilicity measurements. The high sensitivity and selectivity of liquid chromatography mass spectrometry are especially important for new analytical methods using n-in-one. In the first study, the fragmentation patterns of ten nitrophenoxy benzoate compounds, serial homology, were characterised and the presence of the compounds was determined in a combinatorial library. The influence of one or two nitro substituents and the alkyl chain length of methyl to pentyl on collision-induced fragmentation was studied, and interesting structurefragmentation relationships were detected. Two nitro group compounds increased fragmentation compared to one nitro group, whereas less fragmentation was noted in molecules with a longer alkyl chain. The most abundant product ions were nitrophenoxy ions, which were also tested in the precursor ion screening of the combinatorial library. In the second study, the immobilized artificial membrane chromatographic method was transferred from ultraviolet detection to mass spectrometric analysis and a new method was developed. Mass spectra were scanned and the chromatographic retention of compounds was analysed using extract ion chromatograms. When changing detectors and buffers and including n-in-one in the method, the results showed good correlation. Finally, the results demonstrated that mass spectrometric detection with gradient elution can provide a rapid and convenient n-in-one method for ranking the lipophilic properties of several structurally diverse compounds simultaneously. In the final study, a new method was developed for caco-2 samples. Compounds were separated by liquid chromatography and quantified by selected reaction monitoring using mass spectrometry. This method was used for caco-2 samples, where absorption of ten chemically and physiologically different compounds was screened using both single and nin- one approaches. These three studies used mass spectrometry for compound identification, method transfer and quantitation in the area of mixture analysis. Different mass spectrometric scanning modes for the triple quadrupole instrument were used in each method. Early drug discovery with n-in-one is area where mass spectrometric analysis, its possibilities and proper use, is especially important.
Resumo:
The transient response spectrum of a cubic spring mass system subjected to a step function input is obtained. An approximate method is adopted where non-linear restoring force characteristic is replaced by two linear segments, so that the mean square error between them is a minimum. The effect of viscous damping on the peak response is also discussed for various values of the damping constant and the non-linearity restoring force parameter.
Resumo:
In this thesis a manifold learning method is applied to the problem of WLAN positioning and automatic radio map creation. Due to the nature of WLAN signal strength measurements, a signal map created from raw measurements results in non-linear distance relations between measurement points. These signal strength vectors reside in a high-dimensioned coordinate system. With the help of the so called Isomap-algorithm the dimensionality of this map can be reduced, and thus more easily processed. By embedding position-labeled strategic key points, we can automatically adjust the mapping to match the surveyed environment. The environment is thus learned in a semi-supervised way; gathering training points and embedding them in a two-dimensional manifold gives us a rough mapping of the measured environment. After a calibration phase, where the labeled key points in the training data are used to associate coordinates in the manifold representation with geographical locations, we can perform positioning using the adjusted map. This can be achieved through a traditional supervised learning process, which in our case is a simple nearest neighbors matching of a sampled signal strength vector. We deployed this system in two locations in the Kumpula campus in Helsinki, Finland. Results indicate that positioning based on the learned radio map can achieve good accuracy, especially in hallways or other areas in the environment where the WLAN signal is constrained by obstacles such as walls.
Resumo:
We report a measurement of the top quark mass $M_t$ in the dilepton decay channel $t\bar{t}\to b\ell'^{+}\nu'_\ell\bar{b}\ell^{-}\bar{\nu}_{\ell}$. Events are selected with a neural network which has been directly optimized for statistical precision in top quark mass using neuroevolution, a technique modeled on biological evolution. The top quark mass is extracted from per-event probability densities that are formed by the convolution of leading order matrix elements and detector resolution functions. The joint probability is the product of the probability densities from 344 candidate events in 2.0 fb$^{-1}$ of $p\bar{p}$ collisions collected with the CDF II detector, yielding a measurement of $M_t= 171.2\pm 2.7(\textrm{stat.})\pm 2.9(\textrm{syst.})\mathrm{GeV}/c^2$.
Resumo:
We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg->H->W+W- in p=pbar collisions at the Fermilab Tevatron Collider at sqrt{s}=1.96 TeV. With 4.8 fb-1 of integrated luminosity analyzed at CDF and 5.4 fb-1 at D0, the 95% Confidence Level upper limit on \sigma(gg->H) x B(H->W+W-) is 1.75 pb at m_H=120 GeV, 0.38 pb at m_H=165 GeV, and 0.83 pb at m_H=200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.
Resumo:
We present measurements of the top quark mass using the \mT2, a variable related to the transverse mass in events with two missing particles. We use the template method applied to t\tbar dilepton events produced in p\pbar collisions at Fermilab's Tevatron and collected by the CDF detector. From a data sample corresponding to an integrated luminosity of 3.4 \invfb, we select 236 t\tbar candidate events. Using the \mT2 distribution, we measure the top quark mass to be M_{Top} = 168.0^{+4.8}_{-4.0} $\pm$ {2.9} GeV/c^{2}. By combining the \mT2 with the reconstructed top mass distributions based on a neutrino weighting method, we measure M_{top}=169.3 $\pm$ 2.7 $\pm$ 3.2 GeV/c^{2}. This is the first application of the \mT2 variable in a mass measurement at a hadron collider.
Resumo:
We present a measurement of the top quark mass and of the top-antitop pair production cross section using p-pbar data collected with the CDFII detector at the Tevatron Collider at the Fermi National Accelerator Laboratory and corresponding to an integrated luminosity of 2.9 fb-1. We select events with six or more jets satisfying a number of kinematical requirements imposed by means of a neural network algorithm. At least one of these jets must originate from a b quark, as identified by the reconstruction of a secondary vertex inside the jet. The mass measurement is based on a likelihood fit incorporating reconstructed mass distributions representative of signal and background, where the absolute jet energy scale (JES) is measured simultaneously with the top quark mass. The measurement yields a value of 174.8 +- 2.4(stat+JES) ^{+1.2}_{-1.0}(syst) GeV/c^2, where the uncertainty from the absolute jet energy scale is evaluated together with the statistical uncertainty. The procedure measures also the amount of signal from which we derive a cross section, sigma_{ttbar} = 7.2 +- 0.5(stat) +- 1.0 (syst) +- 0.4 (lum) pb, for the measured values of top quark mass and JES.
Resumo:
The transient response of non-linear spring mass systems with Coulomb damping, when subjected to a step function is investigated. For a restricted class of non-linear spring characteristics, exact expressions are developed for (i) the first peak of the response curves, and (ii) the time taken to reach it. A simple, yet accurate linearization procedure is developed for obtaining the approximate time required to reach the first peak, when the spring characteristic is a general function of the displacement. The results are presented graphically in non-dimensional form.
Resumo:
A precision measurement of the top quark mass m_t is obtained using a sample of ttbar events from ppbar collisions at the Fermilab Tevatron with the CDF II detector. Selected events require an electron or muon, large missing transverse energy, and exactly four high-energy jets, at least one of which is tagged as coming from a b quark. A likelihood is calculated using a matrix element method with quasi-Monte Carlo integration taking into account finite detector resolution and jet mass effects. The event likelihood is a function of m_t and a parameter DJES to calibrate the jet energy scale /in situ/. Using a total of 1087 events, a value of m_t = 173.0 +/- 1.2 GeV/c^2 is measured.
Resumo:
We report a measurement of the top quark mass, m_t, obtained from ppbar collisions at sqrt(s) = 1.96 TeV at the Fermilab Tevatron using the CDF II detector. We analyze a sample corresponding to an integrated luminosity of 1.9 fb^-1. We select events with an electron or muon, large missing transverse energy, and exactly four high-energy jets in the central region of the detector, at least one of which is tagged as coming from a b quark. We calculate a signal likelihood using a matrix element integration method, with effective propagators to take into account assumptions on event kinematics. Our event likelihood is a function of m_t and a parameter JES that determines /in situ/ the calibration of the jet energies. We use a neural network discriminant to distinguish signal from background events. We also apply a cut on the peak value of each event likelihood curve to reduce the contribution of background and badly reconstructed events. Using the 318 events that pass all selection criteria, we find m_t = 172.7 +/- 1.8 (stat. + JES) +/- 1.2 (syst.) GeV/c^2.
Resumo:
We present a search for high-mass neutral resonances using dimuon data corresponding to an integrated luminosity of 2.3 fb$^{-1}$ collected in {$p\bar p$} collisions at {$\sqrt{s}$ = 1.96 TeV} by the CDF II detector at the Fermilab Tevatron. No significant excess above the standard model expectation is observed in the dimuon invariant-mass spectrum. We set 95% confidence level upper limits on $\sigma \cdot BR (p \bar{p} \to X \to \mu \bar{\mu})$, where $X$ is a boson with spin 0, 1, or 2. Using these cross section limits, we determine lower mass limits on sneutrinos in R-parity-violating supersymmetric models, $Z'$ bosons, and Kaluza-Klein gravitons in the Randall-Sundrum model.
Resumo:
We present an analysis of the mass of the X(3872) reconstructed via its decay to J/psi pi+ pi- using 2.4 fb^-1 of integrated luminosity from ppbar collisions at sqrt(s) = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. The possible existence of two nearby mass states is investigated. Within the limits of our experimental resolution the data are consistent with a single state, and having no evidence for two states we set upper limits on the mass difference between two hypothetical states for different assumed ratios of contributions to the observed peak. For equal contributions, the 95% confidence level upper limit on the mass difference is 3.6 MeV/c^2. Under the single-state model the X(3872) mass is measured to be 3871.61 +- 0.16 (stat) +- 0.19 (syst) MeV/c^2, which is the most precise determination to date.
Resumo:
Evidence is reported for a narrow structure near the $J/\psi\phi$ threshold in exclusive $B^+\to J/\psi\phi K^+$ decays produced in $\bar{p} p $ collisions at $\sqrt{s}=1.96 \TeV$. A signal of $14\pm5$ events, with statistical significance in excess of 3.8 standard deviations, is observed in a data sample corresponding to an integrated luminosity of $2.7 \ifb$, collected by the CDF II detector. The mass and natural width of the structure are measured to be $4143.0\pm2.9(\mathrm{stat})\pm1.2(\mathrm{syst}) \MeVcc$ and $11.7^{+8.3}_{-5.0}(\mathrm{stat})\pm3.7(\mathrm{syst}) \MeVcc$.
First simultaneous measurement of the top quark mass in the lepton+jets and dilepton channels at CDF
Resumo:
We present a measurement of the mass of the top quark using data corresponding to an integrated luminosity of 1.9fb^-1 of ppbar collisions collected at sqrt{s}=1.96 TeV with the CDF II detector at Fermilab's Tevatron. This is the first measurement of the top quark mass using top-antitop pair candidate events in the lepton + jets and dilepton decay channels simultaneously. We reconstruct two observables in each channel and use a non-parametric kernel density estimation technique to derive two-dimensional probability density functions from simulated signal and background samples. The observables are the top quark mass and the invariant mass of two jets from the W decay in the lepton + jets channel, and the top quark mass and the scalar sum of transverse energy of the event in the dilepton channel. We perform a simultaneous fit for the top quark mass and the jet energy scale, which is constrained in situ by the hadronic W boson mass. Using 332 lepton + jets candidate events and 144 dilepton candidate events, we measure the top quark mass to be mtop=171.9 +/- 1.7 (stat. + JES) +/- 1.1 (syst.) GeV/c^2 = 171.9 +/- 2.0 GeV/c^2.