942 resultados para Waste attribution


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports an experimental investigation of converting waste medium density fibreboard (MDF) sawdust into chars and activated carbon using chemical activation and thermal carbonisation processes. The MDF sawdust generated during the production of architectural mouldings was characterised and found to have unique properties in terms of fine particle size and high particle density. It also has a high content of urea formaldehyde resin used as a binder in the manufacturing of MDF board. Direct thermal carbonisation and chemical activation of the sawdust by metal impregnation and acid (phosphoric acid) treatment prior to pyrolysis treatment were carried out. The surface morphology of the raw dust, its chars and activated carbon were examined using scanning electron microscopy (SEM). Adsorptive properties and total pore volume of the materials were also analysed using the BET nitrogen adsorption method. Liquid adsorption of a reactive dye (Levafix Brilliant red E-4BA) by the derived sawdust carbon was investigated in batch isothermal adsorption process and the results compared to adsorption on to a commercial activated carbon (Filtrasorb F400). The MDF sawdust carbon exhibited in general a very low adsorption capacity towards the reactive dye, and physical characterisation of the carbon revealed that the conventional chemical activation and thermal carbonisation process were ineffective in developing a microporous structure in the dust particles. The small size of the powdery dust, the high particle density, and the presence of the urea formaldehyde resin all contributed to the difficulty of developing a proper porous structure during the thermal and chemical activation process. Finally, activation of the dust material in a consolidated form (cylindrical pellet) only achieved very limited improvement in the dye adsorption capacity. This original study, reporting some unexpected outcomes, may serve as a stepping-stone for future investigations of recycle and reuse of the waste MDF sawdust which is becoming an increasing environmental and cost liability. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid low-level radioactive waste (LLW) is currently being disposed at a number of facilities in the United Kingdom (UK). The safety of these facilities relies to some extent on the use of engineered barriers, such as a cap, to isolate the waste and protect the environment. Generally, the material used as the barrier layer within such a cap should be of low permeability and it should retain this property over long timescales (beyond a few decades normally required for facilities containing non-radioactive wastes). The objective of this research is to determine the mineralogy of selected geological deposits from the UK and Ireland as part of a larger project to examine their suitability as a capping material, particularly on LLW sites. Mineral transformations, as a result of future climate change, may impact on the long-term performance of the cap and even the disposal facility. X-ray diffraction (XRD) was carried-out on the sand, silt and clay fractions of the London Clay, Belfast Upper Boulder Clay, Irish Glacial Till, Belfast Sleech, and Ampthill Clay geological deposits. Minerals were present that could pose both positive and negative effects on the long-term performance of the cap. Smectite, which has a high shrink swell potential, may produce cracks in London Clay, Belfast Upper Boulder Clay and Ampthill Clay capping material during dry, hotter periods as a possible consequence of future climate change; thus, resulting in higher permeability. Ampthill Clay and Belfast Sleech had elevated amounts of organic matter (OM) at 5.93% and 5.88%, respectively, which may also contribute to cracking. Over time, this OM may decompose and result in increased permeability. Gypsum (CaSO4) in the silt and sand fractions of Ampthill Clay may reduce the impact of erosion during wetter periods if it is incorporated into the upper portion of the cap. There are potential negative effects from the acidity created by the weathering of pyrite (FeS2) present in the silt and sand fractions of Belfast Sleech and Ampthill Clay that could impede the growth of grasses used to stabilize the surface of the capping material if this material is used as part of the vegetative soil layer. Additionally, acidic waters generated from pyrite weathering could negatively impact the lower lying capping layers and the disposal facility in general. However, the calcium carbonate (CaCO3) present in the silt and sand fractions of these deposits, and dolomite (CaMg(CO3)2) in Belfast Sleech, may counter act the acidity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waste glycerol was converted to secondary amines in a one pot reaction, using Clostridium butyricum and catalytic hydrogen transfer-mediated amination.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The government of Greece has gained notoriety for its failure to implement EU environmental directives in general, and is criticised specifically for its lack of an effective plan for the safe disposal of waste. Local mobilisations against a series of planned 'Sanitary Waste Disposal Sites' (HETAs) in three municipalities of Attica are examined. Should such protests be classified as NIMBY (not in my backyard)? Or do they present broader claims of justice and equity? Qualitative analysis of the protesters' on-line campaign material reveals that while these mobilisations do demonstrate some NIMBY characteristics, such campaigns should rather be perceived as ad hoc mobilisations reflective of tensions of late modernity. The public's mistrust of science and concerns about democratic deficit and accountability, as well as different perceptions of risk, are prominent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incinerator bottom ash (IBA) is a residual produced from incinerating municipal solid waste. In the past, IBA presented a big waste disposal problem; however, various recycling approaches have been adopted in recent years to mitigate this problem, as well as to provide a useful alternative to using primary aggregate resources. The use of IBA as an alternative to conventional aggregates in different civil engineering construction applications helps to conserve premium grade aggregate supplies; however, when IBA is in contact with water in the field, as a consequence of precipitation events or changes in water table, elements, such as salts and heavy metals, may be released to the soil and ground water. In this work, IBA waste was mixed with limestone aggregate to produce a blend with acceptable mechanical properties and minimum environmental risks for use as road foundation. The study focused on evaluating potential environmental impacts of some constituents, including sulphate, chloride, sodium, copper, zinc and lead in IBA blends using a lysimeter as a large scale leaching tool. Moreover, a specific scenario simulating field conditions was adopted in the lysimeter to assess the potential impact of changing conditions, such as IBA content in the blend, liquid to solid ratio (L/S) and pH value, on long-term release of heavy metals and salts. Then, numerical modelling was used to predict the release of the aforementioned constituents from IBA based on initial measurement of intrinsic material properties and the kinetic desorption process concept. Experimental results showed that zinc and lead were released in very low concentrations but sodium and sulphate were in high concentrations. The control limestone only blend also demonstrated low release concentrations of constituents in comparison to IBA blends, where constituent concentrations increased with increase in IBA content. Experimental results were compared with numerical results obtained using a non-equilibrium desorption model. Good agreement was found between the two sets of data. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground-penetrating radar (GPR) is a rapid geophysical technique that we have used to assess four illegally buried waste locations in Northern Ireland. GPR allowed informed positioning of the less-rapid, if more accurate use of electrical resistivity imaging (ERI). In conductive waste, GPR signal loss can be used to map the areal extent of waste, allowing ERI survey lines to be positioned. In less conductive waste the geometry of the burial can be ascertained from GPR alone, allowing rapid assessment. In both circumstances, the conjunctive use of GPR and ERI is considered best practice for cross-validation of results and enhancing data interpretation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The illegal burial of waste often occurs in locations where loose, transferable material is abundant, allowing covert pits to be dug or filled. The transfer of waste material onto suspects and their vehicles during loading, unloading, and burial is common, as is the case during other criminal activities such as the burial of murder victims. We use two case studies to show that the established principles of using geological materials in excluding or linking suspects can be applied to illegal waste disposal. In the first case, the layering of different geological materials on the tailgate of a container used to transport toxic waste demonstrated where the vehicle had been and denied the owner's alibi, associating him with an illegal dumpsite. In the second case, an unusual suite of minerals, recovered from a suspect's trousers, provided the intelligence that led environmental law enforcement officers to an illegal waste burial site.