936 resultados para Viral transmission and infection
Resumo:
BACKGROUND: Efavirenz and lopinavir boosted with ritonavir are both recommended as first-line therapies for patients with HIV when combined with two nucleoside reverse transcriptase inhibitors. It is uncertain which therapy is more effective for patients starting therapy with an advanced infection. METHODS: We estimated the relative effect of these two therapies on rates of virological and immunological failure within the Swiss HIV Cohort Study and considered whether estimates depended on the CD4(+) T-cell count when starting therapy. We defined virological failure as either an incomplete virological response or viral rebound after viral suppression and immunological failure as failure to achieve an expected CD4(+) T-cell increase calculated from EuroSIDA statistics. RESULTS: Patients starting efavirenz (n=660) and lopinavir (n=541) were followed for a median of 4.5 and 3.1 years, respectively. Virological failure was less likely for patients on efavirenz, with the adjusted hazard ratio (95% confidence interval) of 0.63 (0.50-0.78) then multiplied by a factor of 1.00 (0.90-1.12) for each 100 cells/mm(3) decrease in CD4(+) T-cell count below the mean when starting therapy. Immunological failure was also less likely for patients on efavirenz, with the adjusted hazard ratio of 0.68 (0.51-0.91) then multiplied by a factor of 1.29 (1.14-1.46) for each 100 cells/mm(3) decrease in CD4(+) T-cell count below the mean when starting therapy. CONCLUSIONS: Virological failure is less likely with efavirenz regardless of the CD4(+) T-cell count when starting therapy. Immunological failure is also less likely with efavirenz; however, this advantage disappears if patients start therapy with a low CD4(+) T-cell count.
Resumo:
The cytosine deaminase APOBEC3G, in the absence of the human immunodeficiency virus type 1 (HIV-1) accessory gene HIV-1 viral infectivity factor (vif), inhibits viral replication by introducing G-->A hypermutation in the newly synthesized HIV-1 DNA negative strand. We tested the hypothesis that genetic variants of APOBEC3G may modify HIV-1 transmission and disease progression. Single nucleotide polymorphisms were identified in the promoter region (three), introns (two), and exons (two). Genotypes were determined for 3,073 study participants enrolled in six HIV-AIDS prospective cohorts. One codon-changing variant, H186R in exon 4, was polymorphic in African Americans (AA) (f = 37%) and rare in European Americans (f < 3%) or Europeans (f = 5%). For AA, the variant allele 186R was strongly associated with decline in CD4 T cells (CD4 slope on square root scale: -1.86, P = 0.009), The 186R allele was also associated with accelerated progression to AIDS-defining conditions in AA. The in vitro antiviral activity of the 186R enzyme was not inferior to that of the common H186 variant. These studies suggest that there may be a modifying role of variants of APOBEC3G on HIV-1 disease progression that warrants further investigation.
Resumo:
A crucial step in the arenavirus life cycle is the biosynthesis of the viral envelope glycoprotein (GP) responsible for virus attachment and entry. Processing of the GP precursor (GPC) by the cellular proprotein convertase site 1 protease (S1P), also known as subtilisin-kexin-isozyme 1 (SKI-1), is crucial for cell-to-cell propagation of infection and production of infectious virus. Here, we sought to evaluate arenavirus GPC processing by S1P as a target for antiviral therapy using a recently developed peptide-based S1P inhibitor, decanoyl (dec)-RRLL-chloromethylketone (CMK), and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). To control for off-target effects of dec-RRLL-CMK, we employed arenavirus reverse genetics to introduce a furin recognition site into the GPC of LCMV. The rescued mutant virus grew to normal titers, and the processing of its GPC critically depended on cellular furin, but not S1P. Treatment with the S1P inhibitor dec-RRLL-CMK resulted in specific blocking of viral spread and virus production of LCMV. Combination of the protease inhibitor with ribavirin, currently used clinically for treatment of human arenavirus infections, resulted in additive drug effects. In cells deficient in S1P, the furin-dependent LCMV variant established persistent infection, whereas wild-type LCMV underwent extinction without the emergence of S1P-independent escape variants. Together, the potent antiviral activity of an inhibitor of S1P-dependent GPC cleavage, the additive antiviral effect with ribavirin, and the low probability of emergence of S1P-independent viral escape variants make S1P-mediated GPC processing by peptide-derived inhibitors a promising strategy for the development of novel antiarenaviral drugs.
Resumo:
The laboratory tests currently available to the clinician for day-to-day management of HIV infection are generally limited to the measurement of the viral load and of the CD4 cell count. More recently, analysis of drug resistance and of plasma drug levels have been added to the monitoring armamentarium. There are, however, numerous other techniques currently available to researchers that may in the future be incorporated into clinical routine. These include the analysis of human and viral genetic determinants of disease evolution, detailed analyses of immune recovery and reserve, pharmacogenetic determinants of treatment response, and toxicity. These approaches may in the future provide highly individualized disease management.
Resumo:
The Munc13 gene family encodes molecules located at the synaptic active zone that regulate the reliability of synapses to encode information over a wide range of frequencies in response to action potentials. In the CNS, proteins of the Munc13 family are critical in regulating neurotransmitter release and synaptic plasticity. Although Munc13-1 is essential for synaptic transmission, it is paradoxical that Munc13-2 and Munc13-3 are functionally dispensable at some synapses, although their loss in other synapses leads to increases in frequency-dependent facilitation. We addressed this issue at the calyx of Held synapse, a giant glutamatergic synapse that we found to express all these Munc13 isoforms. We studied their roles in the regulation of synaptic transmission and their impact on the reliability of information transfer. Through detailed electrophysiological analyses of Munc13-2, Munc13-3, and Munc13-2-3 knock-out and wild-type mice, we report that the combined loss of Munc13-2 and Munc13-3 led to an increase in the rate of calcium-dependent recovery and a change in kinetics of release of the readily releasable pool. Furthermore, viral-mediated overexpression of a dominant-negative form of Munc13-1 at the calyx demonstrated that these effects are Munc13-1 dependent. Quantitative immunohistochemistry using Munc13-fluorescent protein knock-in mice revealed that Munc13-1 is the most highly expressed Munc13 isoform at the calyx and the only one highly colocalized with Bassoon at the active zone. Based on these data, we conclude that Munc13-2 and Munc13-3 isoforms limit the ability of Munc13-1 to regulate calcium-dependent replenishment of readily releasable pool and slow pool to fast pool conversion in central synapses.
Resumo:
BACKGROUND: Rhinovirus is the most common cause of respiratory viral infections and leads to frequent respiratory symptoms in lung transplant recipients. However, it remains unknown whether the rhinovirus load correlates with the severity of symptoms. OBJECTIVES: This study aimed to better characterize the pathogenesis of rhinoviral infection and the way in which viral load correlates with symptoms. STUDY DESIGN: We assessed rhinovirus load in positive upper respiratory specimens of patients enrolled prospectively in a cohort of 116 lung transplant recipients. Rhinovirus load was quantified according to a validated in-house, real-time, reverse transcription polymerase chain reaction in pooled nasopharyngeal and pharyngeal swabs. Symptoms were recorded in a standardised case report form completed at each screening/routine follow-up visit, or during any emergency visit occurring during the 3-year study. RESULTS: Rhinovirus infections were very frequent, including in asymptomatic patients not seeking a specific medical consultation. Rhinovirus load ranged between 4.1 and 8.3 log copies/ml according to the type of visit and clinical presentation. Patients with highest symptom scores tended to have higher viral loads, particularly those presenting systemic symptoms. When considering symptoms individually, rhinovirus load was significantly higher in the presence of symptoms such as sore throat, fever, sputum production, cough, and fatigue. There was no association between tacrolimus levels and rhinovirus load. CONCLUSIONS: Rhinovirus infections are very frequent in lung transplant recipients and rhinoviral load in the upper respiratory tract is relatively high even in asymptomatic patients. Patients with the highest symptom scores tend to have a higher rhinovirus load.
Resumo:
BACKGROUND: Temporary increases in plasma HIV RNA ('blips') are common in HIV patients on combination antiretroviral therapy (cART). Blips above 500 copies/mL have been associated with subsequent viral rebound. It is not clear if this relationship still holds when measurements are made using newer more sensitive assays. METHODS: We selected antiretroviral-naive patients that then recorded one or more episodes of viral suppression on cART with HIV RNA measurements made using more sensitive assays (lower limit of detection below 50 copies/ml). We estimated the association in these episodes between blip magnitude and the time to viral rebound. RESULTS: Four thousand ninety-four patients recorded a first episode of viral suppression on cART using more sensitive assays; 1672 patients recorded at least one subsequent suppression episode. Most suppression episodes (87 %) were recorded with TaqMan version 1 or 2 assays. Of the 2035 blips recorded, 84 %, 12 % and 4 % were of low (50-199 copies/mL), medium (200-499 copies/mL) and high (500-999 copies/mL) magnitude respectively. The risk of viral rebound increased as blip magnitude increased with hazard ratios of 1.20 (95 % CI 0.89-1.61), 1.42 (95 % CI 0.96-2.19) and 1.93 (95 % CI 1.24-3.01) for low, medium and high magnitude blips respectively; an increase of hazard ratio 1.09 (95 % CI 1.03 to 1.15) per 100 copies/mL of HIV RNA. CONCLUSIONS: With the more sensitive assays now commonly used for monitoring patients, blips above 200 copies/mL are increasingly likely to lead to viral rebound and should prompt a discussion about adherence.
Resumo:
The development of dysfunctional or exhausted T cells is characteristic of immune responses to chronic viral infections and cancer. Exhausted T cells are defined by reduced effector function, sustained upregulation of multiple inhibitory receptors, an altered transcriptional program and perturbations of normal memory development and homeostasis. This review focuses on (a) illustrating milestone discoveries that led to our present understanding of T cell exhaustion, (b) summarizing recent developments in the field, and (c) identifying new challenges for translational research. Exhausted T cells are now recognized as key therapeutic targets in human infections and cancer. Much of our knowledge of the clinically relevant process of exhaustion derives from studies in the mouse model of Lymphocytic choriomeningitis virus (LCMV) infection. Studies using this model have formed the foundation for our understanding of human T cell memory and exhaustion. We will use this example to discuss recent advances in our understanding of T cell exhaustion and illustrate the value of integrated mouse and human studies and will emphasize the benefits of bi-directional mouse-to-human and human-to-mouse research approaches.
Resumo:
BACKGROUND: Antiretroviral regimens containing tenofovir disoproxil fumarate have been associated with renal toxicity and reduced bone mineral density. Tenofovir alafenamide is a novel tenofovir prodrug that reduces tenofovir plasma concentrations by 90%, thereby decreasing off-target side-effects. We aimed to assess whether efficacy, safety, and tolerability were non-inferior in patients switched to a regimen containing tenofovir alafenamide versus in those remaining on one containing tenofovir disoproxil fumarate. METHODS: In this randomised, actively controlled, multicentre, open-label, non-inferiority trial, we recruited HIV-1-infected adults from Gilead clinical studies at 168 sites in 19 countries. Patients were virologically suppressed (HIV-1 RNA <50 copies per mL) with an estimated glomerular filtration rate of 50 mL per min or greater, and were taking one of four tenofovir disoproxil fumarate-containing regimens for at least 96 weeks before enrolment. With use of a third-party computer-generated sequence, patients were randomly assigned (2:1) to receive a once-a-day single-tablet containing elvitegravir 150 mg, cobicistat 150 mg, emtricitabine 200 mg, and tenofovir alafenamide 10 mg (tenofovir alafenamide group) or to carry on taking one of four previous tenofovir disoproxil fumarate-containing regimens (tenofovir disoproxil fumarate group) for 96 weeks. Randomisation was stratified by previous treatment regimen in blocks of six. Patients and treating physicians were not masked to the assigned study regimen; outcome assessors were masked until database lock. The primary endpoint was the proportion of patients who received at least one dose of study drug who had undetectable viral load (HIV-1 RNA <50 copies per mL) at week 48. The non-inferiority margin was 12%. This study was registered with ClinicalTrials.gov, number NCT01815736. FINDINGS: Between April 12, 2013 and April 3, 2014, we enrolled 1443 patients. 959 patients were randomly assigned to the tenofovir alafenamide group and 477 to the tenofovir disoproxil fumarate group. Viral suppression at week 48 was noted in 932 (97%) patients assigned to the tenofovir alafenamide group and in 444 (93%) assigned to the tenofovir disoproxil fumarate group (adjusted difference 4·1%, 95% CI 1·6-6·7), with virological failure noted in ten and six patients, respectively. The number of adverse events was similar between the two groups, but study drug-related adverse events were more common in the tenofovir alafenamide group (204 patients [21%] vs 76 [16%]). Hip and spine bone mineral density and glomerular filtration were each significantly improved in patients in the tenofovir alafenamide group compared with those in the tenofovir disoproxil fumarate group. INTERPRETATION: Switching to a tenofovir alafenamide-containing regimen from one containing tenofovir disoproxil fumarate was non-inferior for maintenance of viral suppression and led to improved bone mineral density and renal function. Longer term follow-up is needed to better understand the clinical impact of these changes. FUNDING: Gilead Sciences.
Resumo:
Waddlia chondrophila is a known bovine abortigenic Chlamydia-related bacterium that has been associated with adverse pregnancy outcomes in human. However, there is a lack of knowledge regarding how W. chondrophila infection spreads, its ability to elicit an immune response and induce pathology. A murine model of genital infection was developed to investigate the pathogenicity and immune response associated with a W. chondrophila infection. Genital inoculation of the bacterial agent resulted in a dose-dependent infection that spread to lumbar lymph nodes and successively to spleen and liver. Bacterial-induced pathology peaked on day 14, characterized by leukocyte infiltration (uterine horn, liver, and spleen), necrosis (liver) and extramedullary hematopoiesis (spleen). Immunohistochemistry demonstrated the presence of a large number of W. chondrophila in the spleen on day 14. Robust IgG titers were detected by day 14 and remained high until day 52. IgG isotypes consisted of high IgG2a, moderate IgG3 and no detectable IgG1, indicating a Th1-associated immune response. This study provides the first evidence that W. chondrophila genital infection is capable of inducing a systemic infection that spreads to major organs, induces uterus, spleen, and liver pathology and elicits a Th1-skewed humoral response. This new animal model will help our understanding of the mechanisms related to intracellular bacteria-induced miscarriages, the most frequent complication of pregnancy that affects one in four women.
Resumo:
Waddlia chondrophila is an emerging pathogen associated with abortion in cattle. In humans, a growing body of evidence supports its pathogenic role in miscarriage and in respiratory tract infection. The human pathogenicity of W. chondrophila is further supported by the presence of several virulence factors including a catalase, a functional T3SS and several adhesins. Despite this medical importance, no commercial tests are available and diagnostic of this strict intracellular bacterium mainly relies on serology, PCR and immunohistochemistry. So far, the epidemiology of W. chondrophila remains largely unexplored and zoonotic, waterborne or interhuman transmission has been considered. Apart from its pathogenic role, chlamydiologists are also interested in W. chondrophila in order to better understand biological mechanisms conserved and shared with Chlamydia spp. Indeed, W. chondrophila proved to be a useful model organism to study the pathobiology of chlamydiae thanks to its rapid replication, its large size allowing precise subcellular protein localization, as well as its growth in Dictyostelium amoebae.
Resumo:
The identification of cancer-specific enzymatic activities that can be therapeutically targeted is key to the development of suitable anti-cancer drugs. Primary effusion lymphoma (PEL) is a rare and incurable malignancy that can occur in immunodeficient patients as a consequence of latent infection of B-cells with Kaposi's sarcoma-associated herpesvirus, KSHV (also known as human herpesvirus-8, HHV8). Malignant growth of KSHV-infected B cells requires the constitutive activity of the transcription factor NF-KB, which controls expression of viral genes required for maintenance of viral latency and suppression of the viral lytic program. Here we identify the protease mucosa-associated lymphoid tissue transformation protein 1 (MALTI), a key driver of NF-KB activation in lymphocytes, as an essential component in KSHV-dependent NF-KB activation and growth of latently infected PEL cell lines. Inhibition of the MALTI protease activity induced a switch from the latent to the lytic stage of viral infection, and led to reduced growth and survival of PEL cell lines in vitro and in a xenograft model. These results demonstrate a key role for the proteolytic activity of MALTI in PEL, and provide a rationale for the pharmacological targeting of MALTI in PEL therapy. -- L'identification d'activités enzymatiques propre au cancer est clé dans le développement des nouvaux médicaments anti-cancer. Le lymphome primitif des séreuses est un lymphome rare et incurable qui peut se developer chez les patients immunodéficients. Il est la conséquence d'une infection latente des cellules B, dûe à l'herpes virus 8, plus connu comme herpes virus associé au sarcome de Kaposi (KSHV). La croissance maligne des cellules B infecteés par KSHV requière l'activité constitutive du facteur de transcription NF-KB qui contrôle l'expression des genes viraux requis pour la maintenance latente et la suppression du programme de lyse du virus. Avec cette étude, nous avons identifié la protease MALTI comme un composant essentiel dans l'activation de NF-KB dans les cellules B du lymphome primitif des séreuses. L'inhibition de l'activité de la protéase MALTI induit un virement de la phase latente à la phase lytique du KSHV et conduit à une reduction de la viabilité des cellules tumorales in vitro et dans un modèle de xénogreffe. Ces résultats démontrent un rôle clé pour l'activité protéolytique de MALTI dans le développement du lymphome primitif des séreuses et soutiennent l'idée que MALTI pourrait être une cible pharmacologique dans la thérapie de cette forme rare du lymphome.
Resumo:
The aim of this work was to evaluate fungus association, transmission and pathogenicity, besides chemical seed treatment in Ceiba speciosa seeds from different regions of southern Brazil. Seven seed samples were used to do the germination test, fungus detection by blotter test and potato-dextrose-agar (PDA), fungus transmission and pathogenicity tests; besides, chemical seed treatments were tested. Germination ranged from 0 to 59,5%. The following fungi were associated in the seeds: Fusarium sp., Alternaria sp., Colletotrichum sp., Curvularia sp. and Pestalotia sp.; in addition, Fusarium sp. was found in all the samples. Alternaria sp. and Fusarium sp. were transmitted by seeds. The isolates of Alternaria sp., Colletotrichum sp. and Fusarium sp., were pathogenic to seedlings and seeds. The seed treatment with methyl tiophanate and the combination captan + methyl tiophanate reduced Fusarium sp. incidence.
Resumo:
In order to evaluate the use of a Western blot methodology for the diagnosis of infectious bursal disease virus (IBDV) infection, chickens were experimentally infected with IBDV strains and tested for the presence of viral antigens and antibodies by a blocking Western blot test (bWB). The viral proteins obtained from the bursa of Fabricius (BF) were transferred to a nitrocellulose membrane after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and the chicken sera obtained by heart puncture were used for the detection of these proteins. In order to eliminate nonspecific reactions, we used a rabbit anti-chicken serum (blocking tool). By the use of the bWB test, two distinct viral proteins of 43-kDa (VP2) and 32-kDa (VP3) were detected. We suggest the use of this methodology for the detection of IBDV infection in animals suspected of having IBDV reinfection and a chronic subclinical form of the disease. With the use of the rabbit anti-chicken sera for blocking, this method is practical, sensitive and less time consuming
Resumo:
Malaria continues to infect millions and kill hundreds of thousands of people worldwide each year, despite over a century of research and attempts to control and eliminate this infectious disease. Challenges such as the development and spread of drug resistant malaria parasites, insecticide resistance to mosquitoes, climate change, the presence of individuals with subpatent malaria infections which normally are asymptomatic and behavioral plasticity in the mosquito hinder the prospects of malaria control and elimination. In this thesis, mathematical models of malaria transmission and control that address the role of drug resistance, immunity, iron supplementation and anemia, immigration and visitation, and the presence of asymptomatic carriers in malaria transmission are developed. A within-host mathematical model of severe Plasmodium falciparum malaria is also developed. First, a deterministic mathematical model for transmission of antimalarial drug resistance parasites with superinfection is developed and analyzed. The possibility of increase in the risk of superinfection due to iron supplementation and fortification in malaria endemic areas is discussed. The model results calls upon stakeholders to weigh the pros and cons of iron supplementation to individuals living in malaria endemic regions. Second, a deterministic model of transmission of drug resistant malaria parasites, including the inflow of infective immigrants, is presented and analyzed. The optimal control theory is applied to this model to study the impact of various malaria and vector control strategies, such as screening of immigrants, treatment of drug-sensitive infections, treatment of drug-resistant infections, and the use of insecticide-treated bed nets and indoor spraying of mosquitoes. The results of the model emphasize the importance of using a combination of all four controls tools for effective malaria intervention. Next, a two-age-class mathematical model for malaria transmission with asymptomatic carriers is developed and analyzed. In development of this model, four possible control measures are analyzed: the use of long-lasting treated mosquito nets, indoor residual spraying, screening and treatment of symptomatic, and screening and treatment of asymptomatic individuals. The numerical results show that a disease-free equilibrium can be attained if all four control measures are used. A common pitfall for most epidemiological models is the absence of real data; model-based conclusions have to be drawn based on uncertain parameter values. In this thesis, an approach to study the robustness of optimal control solutions under such parameter uncertainty is presented. Numerical analysis of the optimal control problem in the presence of parameter uncertainty demonstrate the robustness of the optimal control approach that: when a comprehensive control strategy is used the main conclusions of the optimal control remain unchanged, even if inevitable variability remains in the control profiles. The results provide a promising framework for the design of cost-effective strategies for disease control with multiple interventions, even under considerable uncertainty of model parameters. Finally, a separate work modeling the within-host Plasmodium falciparum infection in humans is presented. The developed model allows re-infection of already-infected red blood cells. The model hypothesizes that in severe malaria due to parasite quest for survival and rapid multiplication, the Plasmodium falciparum can be absorbed in the already-infected red blood cells which accelerates the rupture rate and consequently cause anemia. Analysis of the model and parameter identifiability using Markov chain Monte Carlo methods is presented.