963 resultados para Variation (Biology)--Ontario--Gull Island.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lyme disease is a multisystemic disorder caused by tick-borne infection of humans or other mammalian hosts with Borrelia burgdorferi. If untreated, the spirochetes can persist in the mammalian host for months or years. The mechanisms by which Lyme disease spirochetes evade the immune response have not been determined. In this study, we have identified and characterized an elaborate genetic system in the Lyme disease spirochete B. burgdorferi that promotes extensive antigenic variation of a 34-kDa surface-exposed lipoprotein, VlsE. A 28-kilobase linear plasmid of B. burgdorferi B31 (lp28-1) was found to contain a vmp-like sequence (vls) locus that closely resembles the variable major protein (vmp) system for antigenic variation of relapsing fever organisms. The presence of lp28-1 correlates with the high-infectivity phenotype in B. burgdorferi strains tested. Segments of the 15 non-expressed (silent) vls cassette sequences located upstream of vlsE are able to recombine into the centra vlsE cassette region during infection of C3H/HeN mice, resulting in antigenic variation of the expressed lipoprotein. When compared to parental VlsE, VlsE variants progressively accumulate sequence changes during the period of 4, 7, 14, 21, and 28 days post infection in C3H/HeN mice. However, no recombination was detected during the period of 28-day in vitro culture, suggesting in vivo induction of VlsE antigenic variation. Adaptive immune responses do not appear to play a significant role in this induction, since similar recombination events were also observed in immunodeficient SCID mice. The $5\sp\prime$ and $3\sp\prime$ noncassette regions of vlsE are apparently not subject to recombination and sequence variation. The structure and sequence of the silent vls cassette locus is preserved during the process of the VlsE antigenic variation, consistent with a nonreciprocal recombination mechanism. This combinatorial form of antigenic variation could potentially yield millions of VlsE variants in the mammalian host, and thereby contribute to immune evasion, long-term survival, and pathogenesis of B. burgdorferi. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human pigmentation is a complex trait with the observed variation caused by the varied production of eumelanin (brown/black melanins) and phaeomelanin (red/yellow melanins) by the melanocytes. The melanocortin 1 receptor (MC1R), a G protein-coupled receptor expressed in the melanocytes, is a regulator eu- and phaeomelanin synthesis, and MC1R mutations causing skin and coat color changes are known in many mammals. To understand the role of MC1R in human pigmentation variation, I have sequenced the MC1R gene in 121 individuals sampled from world populations. In addition, I have sequenced the MC1R gene in common and pygmy chimpanzees, gorilla, orangutan, and baboon to study the evolution of MC1R and to infer the ancestral human MC1R sequence. The ancestral MC1R sequence is observed in all 25 African individuals studied, but at lower frequencies in the other populations examined, especially in East and Southeast Asians. The Arg163Gln variant is absent in the Africans studied, almost absent in Europeans, and at a low frequency in Indians, but is at an exceptionally high frequency (70%) in East and Southeast Asians. To further evaluate the role of MC1R variants in human pigmentation variation, I have combined these molecular evolution and population studies with functional assays on MC1R variants and primate MC1Rs. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long- and short-term strain variations along the Australian-Pacific plate boundary through the South Island of New Zealand, including a 300% increase in orogen width, coexistence of oblique thrusting on orthogonal structures, and variability in the locus of orogenic gold deposits, coincide with rheologically relevant geological variation. Our model investigates the consequences of thin, strong lower crust in the north and thick, weak lower crust in the south. Solution of the full 3-D mechanical equations reproduces the larger wavelength strain patterns of the orogen. A 3-D perturbation-based analytical solution leads to the identification of the sensitivity of displacement type to minor stress changes. Transition from boundary-normal thrusting to boundary-parallel thrusting occurs at the transition from strong to weak lower crust and is related to an increase in either tau(yz) (shear stress in the yz plane) or the ratio of the coordinate normal stresses, (sigma(yy)/sigma(xx)), where x and y are in the horizontal and z is vertical. Both mechanisms are compatible with the geologically dependent rheological variation employed in our model. Citation: Upton, P., P. O. Koons, D. Craw, C. M. Henderson, and R. Enlow (2009), Along-strike differences in the Southern Alps of New Zealand: Consequences of inherited variation in rheology, Tectonics, 28, TC2007, doi:10.1029/2008TC002353.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature plays a critical role in determining the biology of ectotherms. Many animals have evolved mechanisms that allow them to compensate biological rates, i.e. adjust biological rates to overcome thermodynamic effects. For low energy-organisms, such as bivalves, the costs of thermal compensation may be greater than the benefits, and thus prohibitive. To examine this, two experiments were designed to explore thermal compensation in Unio tumidus. Experiment 1 examined seasonal changes in behaviour in U. tumidus throughout a year. Temperature had a clear effect on burrowing rate with no evidence of compensation. Valve closure duration and frequency were also strongly affected by seasonal temperature change, but there was slight evidence of partial compensation. Experiment 2 examined oxygen consumption during burrowing, immediately following valve opening and at rest in summer (24 °C), autumn (14 °C), winter (4 °C), and spring (14 °C) acclimatized U. tumidus. Again, there was little evidence of burrowing rate compensation, but some evidence of partial compensation of valve closure duration and frequency. None of the oxygen compensation rates showed any evidence of thermal compensation. Thus, in general, there was only very limited evidence of thermal compensation of behaviour and no evidence of thermal compensation of oxygen compensation rates. Based upon this evidence, we argue that there is no evolutionary pressure for these bivalves to compensate these biological rates. Any pressure may be to maintain or even lower oxygen consumption as their only defence against predation is to close their valves and wait. An increase in oxygen consumption will be detrimental in this regard so the cost of thermal compensation may outweigh the benefits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the current challenges in evolutionary ecology is understanding the long-term persistence of contemporary-evolving predator–prey interactions across space and time. To address this, we developed an extension of a multi-locus, multi-trait eco-evolutionary individual-based model that incorporates several interacting species in explicit landscapes. We simulated eco-evolutionary dynamics of multiple species food webs with different degrees of connectance across soil-moisture islands. A broad set of parameter combinations led to the local extinction of species, but some species persisted, and this was associated with (1) high connectance and omnivory and (2) ongoing evolution, due to multi-trait genetic variability of the embedded species. Furthermore, persistence was highest at intermediate island distances, likely because of a balance between predation-induced extinction (strongest at short island distances) and the coupling of island diversity by top predators, which by travelling among islands exert global top-down control of biodiversity. In the simulations with high genetic variation, we also found widespread trait evolutionary changes indicative of eco-evolutionary dynamics. We discuss how the ever-increasing computing power and high-resolution data availability will soon allow researchers to start bridging the in vivo–in silico gap.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purified membrane proteins are ternary complexes consisting of protein, lipid, and detergent. Information about the amounts of detergent and endogenous phospholipid molecules bound to purified membrane proteins is largely lacking. In this systematic study, three model membrane proteins of different oligomeric states were purified in nine different detergents at commonly used concentrations and characterized biochemically and biophysically. Detergent-binding capacities and phospholipid contents of the model proteins were determined and compared. The insights on ternary complexes obtained from the experimental results, when put into a general context, are summarized as follows. 1), The amount of detergent and 2) the amount of endogenous phospholipids bound to purified membrane proteins are dependent on the size of the hydrophobic lipid-accessible protein surface areas and the physicochemical properties of the detergents used. 3), The size of the detergent and lipid belt surrounding the hydrophobic lipid-accessible surface of purified membrane proteins can be tuned by the appropriate choice of detergent. 4), The detergents n-nonyl-β-D-glucopyranoside and Cymal-5 have exceptional delipidating effects on ternary complexes. 5), The types of endogenous phospholipids bound to membrane proteins can vary depending on the detergent used for solubilization and purification. 6), Furthermore, we demonstrate that size-exclusion chromatography can be a suitable method for estimating the molecular mass of ternary complexes. The findings presented suggest a strategy to control and tune the numbers of detergent and endogenous phospholipid molecules bound to membrane proteins. These two parameters are potentially important for the successul crystallization of membrane proteins for structure determination by crystallographic approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Duplicate genes emerge as copy-number variations (CNVs) at the population level, and remain copy-number polymorphic until they are fixed or lost. The successful establishment of such structural polymorphisms in the genome plays an important role in evolution by promoting genetic diversity, complexity and innovation. To characterize the early evolutionary stages of duplicate genes and their potential adaptive benefits, we combine comparative genomics with population genomics analyses to evaluate the distribution and impact of CNVs across natural populations of an eco-genomic model, the three-spined stickleback. With whole genome sequences of 66 individuals from populations inhabiting three distinct habitats, we find that CNVs generally occur at low frequencies and are often only found in one of the 11 populations surveyed. A subset of CNVs, however, displays copy-number differentiation between populations, showing elevated within-population frequencies consistent with local adaptation. By comparing teleost genomes to identify lineage-specific genes and duplications in sticklebacks, we highlight rampant gene content differences among individuals in which over 30% of young duplicate genes are CNVs. These CNV genes are evolving rapidly at the molecular level and are enriched with functional categories associated with environmental interactions, depicting the dynamic early copy-number polymorphic stage of genes during population differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neutral and adaptive variation among populations within a species is a major component of biological diversity and may be pronounced among insular populations due to geographical isolation and island specific evolutionary forces at work. Detecting and preserving potential evolutionary significant units below the species rank has become a crucial task for conservation biology. Combining genetic, phenotypic and ecological data, we investigated evolutionary patterns among the enigmatic threespine stickleback populations from western Mediterranean islands, all of which are threatened by habitat deterioration and climate change. We find indications that these populations derive from different genetic lineages, being genetically highly distinct from the stickleback of mainland Europe and the northern Atlantic as well as from each other. Mediterranean island stickleback populations are also phenotypically distinct from mainland populations but interestingly stickleback from Iceland have converged on a similar phenotype. This distinctive island stickleback phenotype seems to be driven by distinct selective regimes on islands versus continents. Overall, our results reveal the status of western Mediterranean island stickleback as evolutionarily distinct units, important for conservation of biodiversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Past agricultural responses to climate variability can helps us to better understand the current and future impacts of climate change on agricultural production. We studied rye (Secale cereale) and barley (Hordeum vulgare) yield responses to temperature fluctuations in Finland during the period 1861–1913. Our analyses demonstrate the high sensitivity of non-industrialised northern agriculture to temperature anomalies. We found evidence of a strong relationship between monthly and seasonal mean temperatures and crop yields. In particular, high spring temperatures were associated with higher yields. Additionally, we tested temperature-sensitive tree-ring series for their value in indicating previous agricultural outputs. The results imply that tree-ring proxies (in particular, maximum latewood density) can provide novel material for studies of historical periods and locations where instrumentally measured climate and harvest data are not available.