915 resultados para Vacuum-tubes.
Resumo:
This study was conducted to observe the rat subcutaneous connective tissue reaction to the implanted dentin tubes filled with calcium hydroxide or mineral trioxide aggregate. The animals were sacrificed after 7 and 30 days, and the specimens were prepared for morphological study. Some undecalcified specimens were prepared for histological analysis with polarized light and Von Kossa technique for calcium. The results were similar for both studied materials. At the tube openings, there were Von Kossa-positive granules that were birefringent to polarized light. Next to these granulations, there was an irregular tissue like a bridge that was Von Kossa-positive. The dentin walls of the tubes exhibited in the tubules a structure highly birefringent to polarized light, usually like a layer and at different depths. It is possible that the mechanism of action of both materials has some similarity. Copyright © 1999 by The American Association of Endodontists.
Resumo:
The present paper describes the morphological alterations of the epithelial layer of the uterine tubes of rats submitted to experimental chronic alcoholism using anatomical, histological, ultrastructural and morphometric methods. Sixty adult rats (Rattus norvegicus albinus) at the same age (3 months) and with a mean body weight of 228 g were divided into two groups. The control group received solid diet (Purina rat chow) and tap water ad libitum. The alcoholic group received the same solid diet and was allowed to drink only sugar cane brandy dissolved in 30° Gay Lussac (v/v). After periods of 90, 180 and 270 days of treatment animals at normal estrus were anaesthetised with ethyl ether, weighed and sacrificed. Subsequently, the uterine tubes were dissected, weighed and prepared for TEM and SEM methods. The final mean body weights were similar in the control and alcoholic groups. The morphometric analysis showed no difference between control and alcoholic epithelial height. The alcoholic animals showed ultrastructural alterations: intense lipid droplet and lysosomes accumulation, dilated rough endoplasmic reticulum cisternae and vacuolization in both periods of treatment. It was concluded that alcohol acts as a toxin on the epithelial layer of the uterine tubes of rats.
Resumo:
We discuss how the vacuum model of Celenza and Shakin with a squeezed gluon condensate can explain the existence of an infrared singular gluon propagator frequently used in calculations within the global color model. In particular, it reproduces a recently proposed QCD-motivated model where low energy chiral parameters were computed as a function of a dynamically generated gluon mass. We show how the strength of the confining interaction of this gluon propagator and the value of the physical gluon condensate may be connected.
Resumo:
We discuss the use of the CP asymmetry parameter (ACP) as a possible observable of CP violation in the leptonic sector. In order to do this, we study for a wide range of values of LIE the behavior of this asymmetry for the corresponding maximal value of the CP violation factor allowed by all the present experimental limits on neutrino oscillations in vacuum and the recent Super-Kamiokande atmospheric neutrino result. We work in the three neutrino flavor framework. ©1999 The American Physical Society.
Resumo:
We use the optimized linear δ expansion and functional methods to study vacuum contributions in nuclear matter up to the lowest non-trivial order which includes exchange terms. We show that well known results (MFT, RHA and HF) can be easily reproduced when appropriate limits are taken. Neglecting vacuum contributions we explicitly show that the δ expansion goes beyond the traditional loop approximation previously used to study two loop vacuum contributions in nuclear matter. We then evaluate and renormalize vacuum exchange contributions showing that they are numerically very large, as predicted by the ordinary loop approximation.
Resumo:
We study the equation of state for neutron matter using the Walecka model including quantum corrections for baryons and sigma mesons through a realignment of the vacuum. We next use this equation of state to calculate the radius, mass, and other properties of rotating neutron stars.
Resumo:
Using the Cornwall-Jackiw-Tomboulis effective potential for composite operators we compute the QCD vacuum energy as a function of the dynamical quark and gluon propagators, which are related to their respective condensâtes as predicted by the operator product expansion. The identification of this result to the vacuum energy obtained from the trace of the energy-momentum tensor allows us to study the gluon self-energy, verifying that it is fairly represented in the ultraviolet by the asymptotic behavior predicted by the operator product expansion, and in the infrared it is frozen at its asymptotic value at one scale of the order of the dynamical gluon mass. We also discuss the implications of this identity for heavy and light quarks. For heavy quarks we recover, through the vacuum energy calculation, the relation nij{filif)-îi(asl'n)GlivGllv obtained many years ago with QCD sum rules. ©2000 The American Physical Society.
Resumo:
We derive the equation of state for hot nuclear matter using the Walecka model in a non-perturbative formalism. We include here the vacuum polarization effects arising from the nucleon and scalar mesons through a realignment of the vacuum. A ground state structure with baryon-antibaryon condensates yields the results obtained through the relativistic Hartree approximation of summing baryonic tadpole diagrams. Generalization of such a state to include the quantum effects for the scalar meson fields through the σ -meson condensates amounts to summing over a class of multiloop diagrams. The techniques of the thermofield dynamics method are used for the finite-temperature and finite-density calculations. The in-medium nucleon and sigma meson masses are also calculated in a self-consistent manner. We examine the liquid-gas phase transition at low temperatures (≈ 20 MeV), as well as apply the formalism to high temperatures to examine a possible chiral symmetry restoration phase transition.
Resumo:
This work presents an investigation into the use of the finite element method and artificial neural networks in the identification of defects in industrial plants metallic tubes, due to the aggressive actions of the fluids contained by them, and/or atmospheric agents. The methodology used in this study consists of simulating a very large number of defects in a metallic tube, using the finite element method. Both variations in width and height of the defects are considered. Then, the obtained results are used to generate a set of vectors for the training of a perceptron multilayer artificial neural network. Finally, the obtained neural network is used to classify a group of new defects, simulated by the finite element method, but that do not belong to the original dataset. The reached results demonstrate the efficiency of the proposed approach, and encourage future works on this subject.
Resumo:
The purpose of this paper was to study the reaction of rat subcutaneous connective tissue to the implantation of dentin tubes filled with white mineral trioxide aggregate (MTA), a material that will be marketed. The tubes were implanted into rat subcutaneous tissue and the animals were sacrificed after 7 and 30 days. The undecalcified pieces were prepared for histological analysis with polarized light and von Kossa technique for mineralized tissues. Granulations birefringent to polarized light and an irregular structure like a bridge were observed next to the material; both were von Kossa positive. Also, in the dentin wall tubules a layer of birefringent granulations was observed. The results were similar to those reported for gray MTA, indicating that the mechanisms of action of the white and gray MTA are similar.
Resumo:
This study examined by means of scanning electron microscopy (SEM), the attachment of Streptococcus mutans and the corrosion of cast commercially pure titanium, used in dental dentures. The sample discs were cast in commercially pure titanium using the vacuum-pressure machine (Rematitan System). The surfaces of each metal were ground and polished with sandpaper (#300-4000) and alumina paste (0.3 μm). The roughness of the surface (Ra) was measured using the Surfcorder rugosimeter SE 1700. Four coupons were inserted separately into Falcon tubes contained Mueller Hinton broth inoculated with S. mutans ATCC 25175 (109 cuf) and incubated at 37 °C. The culture medium was changed every three days during a 365-day period, after which the falcons were prepared for observations by SEM. The mean Ra value of CP Ti was 0.1527 μm. After S. mutans biofilm removal, pits of corrosion were observed. Despite the low roughness, S. mutans attachment and biofilm formation was observed, which induced a surface corrosion of the cast pure titanium.
Resumo:
Objective: Although direct bonding takes up less clinical time and ensures increased preservation of gingival health, the banding of molar teeth is still widespread nowadays. It would therefore be convenient to devise methods capable of increasing the efficiency of this procedure, notably for teeth subjected to substantial masticatory impact, such as molars. This study was conducted with the purpose of evaluating whether direct bonding would benefit from the application of an additional layer of resin to the occlusal surfaces of the tube/tooth interface. Methods: A sample of 40 mandibular third molars was selected and randomly divided into two groups: Group 1 - Conventional direct bonding, followed by the application of a layer of resin to the occlusal surfaces of the tube/tooth interface, and Group 2 - Conventional direct bonding. Shear bond strength was tested 24 hours after bonding with the aid of a universal testing machine operating at a speed of 0.5mm/min. The results were analyzed using the independent t-test. Results: The shear bond strength tests yielded the following mean values: 17.08 MPa for Group 1 and 12.60 MPa for Group 2. Group 1 showed higher statistically significant shear bond strength than Group 2. Conclusions: The application of an additional layer of resin to the occlusal surfaces of the tube/tooth interface was found to enhance bond strength quality of orthodontic buccal tubes bonded directly to molar teeth.
Resumo:
Recently, classical elasticity theory for thin sheets was used to demonstrate the existence of a universal structural behavior describing the confinement of sheets inside cylindrical tubes. However, this kind of formalism was derived to describe macroscopic systems. A natural question is whether this behavior still holds at nanoscale. In this work, we have investigated through molecular dynamics simulations the structural behavior of graphene and boron nitride single layers confined into nanotubes. Our results show that the class of universality observed at macroscale is no longer observed at nanoscale. The origin of this discrepancy is addressed in terms of the relative importance of forces and energies at macro and nano scales. © 2012 Materials Research Society.
Resumo:
It has been shown that well-behaved spacetimes may induce the vacuum fluctuations of some nonminimally coupled free scalar fields to go through a phase of exponential growth. Here, we discuss this mechanism in the context of spheroidal thin shells emphasizing the consequences of deviations from spherical symmetry. © 2013 American Physical Society.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)