980 resultados para Uniformly Convex
Resumo:
A method is presented for determining the complete load-deflection behavior of reinforced concrete skew slabs restrained at the edges and subjected to uniformly-distributed loading. The analysis is considered in three stages. In the first stage the load-deflection behavior up to the cracking load is considered. The behavior between the cracking load and the yield line load is considered in the second stage. The load-deflection behavior beyond the yield line load, taking into account the effect of the membrane action, is considered in the third stage. Details of an experimental program of casting and testing 12 reinforced concrete skew slabs restrained at the edges are presented to verify the results of the analysis.
Resumo:
Motivated by a problem from fluid mechanics, we consider a generalization of the standard curve shortening flow problem for a closed embedded plane curve such that the area enclosed by the curve is forced to decrease at a prescribed rate. Using formal asymptotic and numerical techniques, we derive possible extinction shapes as the curve contracts to a point, dependent on the rate of decreasing area; we find there is a wider class of extinction shapes than for standard curve shortening, for which initially simple closed curves are always asymptotically circular. We also provide numerical evidence that self-intersection is possible for non-convex initial conditions, distinguishing between pinch-off and coalescence of the curve interior.
Resumo:
This thesis examines assemblages of wood-decaying fungi in Finnish old-growth forests, and patterns of species interactions between fruit bodies of wood-rotting Basidiomycetes and associated Coleoptera. The present work is a summary of four original publications and a manuscript, which are based on empirical observations and deal with the prevalence of polypores in old-growth forests, and fungicolous Coleoptera. The study area consists of eleven old-growth, mostly spruce- and pine-dominated, protected forests rich in dead wood in northern and southeastern Finland. Supplementary data on fungus beetle interactions were collected in southern Finland and the Åland Islands. 11251 observations of fruit bodies from 153 polypore species were made in 789 forest compartments. Almost a half of the polypore species demonstrated a distinct northern or southeastern trend of prevalence. Polypores with a northern prevalence profile were in extreme cases totally absent from the Southeast, although almost uniformly present in the North. These were Onnia leporina, Climacocystis borealis, Antrodiella pallasii, Skeletocutis chrysella, Oligoporus parvus, Skeletocutis lilacina, and Junghuhnia collabens. Species with higher prevalence in the southeastern sites were Bjerkandera adusta, Inonotus radiatus, Trichaptum pargamenum, Antrodia macra, and Phellinus punctatus. 198 (86%) species of Finnish polypores were examined for associated Coleoptera. Adult beetles were collected from polypore basidiocarps in the wild, while their larvae were reared to adulthood in the lab. Spatial and temporal parallels between the properties of polypore fruit body and the species composition of Coleoptera in fungus beetle interactions were discussed. New data on the biology of individual species of fungivorous Coleoptera were collected. 116 species (50% of Finnish polypore mycota) were found to host adults and/or larvae of 179 species from 20 Coleoptera families. Many new fungus beetle interactions were found among the 614 species pairs; these included 491 polypore fruit body adult Coleoptera species co-occurrences, and 122 fruit body larva interrelations. 82 (41%) polypore species were neither visited nor colonized by Coleoptera. The total number of polyporicolous beetles in Finland is expected to reach 300 species.
Resumo:
Rate-constrained power minimization (PMIN) over a code division multiple-access (CDMA) channel with correlated noise is studied. PMIN is. shown to be an instance of a separable convex optimization problem subject to linear ascending constraints. PMIN is further reduced to a dual problem of sum-rate maximization (RMAX). The results highlight the underlying unity between PMIN, RMAX, and a problem closely related to PMIN but with linear receiver constraints. Subsequently, conceptually simple sequence design algorithms are proposed to explicitly identify an assignment of sequences and powers that solve PMIN. The algorithms yield an upper bound of 2N - 1 on the number of distinct sequences where N is the processing gain. The sequences generated using the proposed algorithms are in general real-valued. If a rate-splitting and multi-dimensional CDMA approach is allowed, the upper bound reduces to N distinct sequences, in which case the sequences can form an orthogonal set and be binary +/- 1-valued.
Resumo:
Coal seam gas operations produce significant quantities of associated water which often require demineralization. Ion exchange with natural zeolites has been proposed as a possible approach. The interaction of natural zeolites with solutions of sodium chloride and sodium bicarbonate in addition to coal seam gas water is not clear. Hence, we investigated ion exchange kinetics, equilibrium, and column behaviour of an Australian natural zeolite. Kinetic tests suggested that the pseudo first order equation best simulated the data. Intraparticle diffusion was part of the rate limiting step and more than one diffusion process controlled the overall rate of sodium ion uptake. Using a constant mass of zeolite and variable concentration of either sodium chloride or sodium bicarbonate resulted in a convex isotherm which was fitted by a Langmuir model. However, using a variable mass of zeolite and constant concentration of sodium ions revealed that the exchange of sodium ions with the zeolite surface sites was in fact unfavourable. Sodium ion exchange from bicarbonate solutions (10.3 g Na/kg zeolite) was preferred relative to exchange from sodium chloride solutions (6.4 g Na/kg zeolite). The formation of calcium carbonate species was proposed to explain the observed behaviour. Column studies of coal seam gas water showed that natural zeolite had limited ability to reduce the concentration of sodium ions (loading 2.1 g Na/kg zeolite) with rapid breakthrough observed. It was concluded that natural zeolites may not be suitable for the removal of cations from coal seam gas water without improvement of their physical properties.
Resumo:
In this article, we propose a denoising algorithm to denoise a time series y(i) = x(i) + e(i), where {x(i)} is a time series obtained from a time- T map of a uniformly hyperbolic or Anosov flow, and {e(i)} a uniformly bounded sequence of independent and identically distributed (i.i.d.) random variables. Making use of observations up to time n, we create an estimate of x(i) for i<n. We show under typical limiting behaviours of the orbit and the recurrence properties of x(i), the estimation error converges to zero as n tends to infinity with probability 1.
Resumo:
Flexible objects such as a rope or snake move in a way such that their axial length remains almost constant. To simulate the motion of such an object, one strategy is to discretize the object into large number of small rigid links connected by joints. However, the resulting discretised system is highly redundant and the joint rotations for a desired Cartesian motion of any point on the object cannot be solved uniquely. In this paper, we revisit an algorithm, based on the classical tractrix curve, to resolve the redundancy in such hyper-redundant systems. For a desired motion of the `head' of a link, the `tail' is moved along a tractrix, and recursively all links of the discretised objects are moved along different tractrix curves. The algorithm is illustrated by simulations of a moving snake, tying of knots with a rope and a solution of the inverse kinematics of a planar hyper-redundant manipulator. The simulations show that the tractrix based algorithm leads to a more `natural' motion since the motion is distributed uniformly along the entire object with the displacements diminishing from the `head' to the `tail'.
Resumo:
Diffuse large B-cell lymphoma (DLBCL) is the most common of the non-Hodgkin lymphomas. As DLBCL is characterized by heterogeneous clinical and biological features, its prognosis varies. To date, the International Prognostic Index has been the strongest predictor of outcome for DLBCL patients. However, no biological characters of the disease are taken into account. Gene expression profiling studies have identified two major cell-of-origin phenotypes in DLBCL with different prognoses, the favourable germinal centre B-cell-like (GCB) and the unfavourable activated B-cell-like (ABC) phenotypes. However, results of the prognostic impact of the immunohistochemically defined GCB and non-GCB distinction are controversial. Furthermore, since the addition of the CD20 antibody rituximab to chemotherapy has been established as the standard treatment of DLBCL, all molecular markers need to be evaluated in the post-rituximab era. In this study, we aimed to evaluate the predictive value of immunohistochemically defined cell-of-origin classification in DLBCL patients. The GCB and non-GCB phenotypes were defined according to the Hans algorithm (CD10, BCL6 and MUM1/IRF4) among 90 immunochemotherapy- and 104 chemotherapy-treated DLBCL patients. In the chemotherapy group, we observed a significant difference in survival between GCB and non-GCB patients, with a good and a poor prognosis, respectively. However, in the rituximab group, no prognostic value of the GCB phenotype was observed. Likewise, among 29 high-risk de novo DLBCL patients receiving high-dose chemotherapy and autologous stem cell transplantation, the survival of non-GCB patients was improved, but no difference in outcome was seen between GCB and non-GCB subgroups. Since the results suggested that the Hans algorithm was not applicable in immunochemotherapy-treated DLBCL patients, we aimed to further focus on algorithms based on ABC markers. We examined the modified activated B-cell-like algorithm based (MUM1/IRF4 and FOXP1), as well as a previously reported Muris algorithm (BCL2, CD10 and MUM1/IRF4) among 88 DLBCL patients uniformly treated with immunochemotherapy. Both algorithms distinguished the unfavourable ABC-like subgroup with a significantly inferior failure-free survival relative to the GCB-like DLBCL patients. Similarly, the results of the individual predictive molecular markers transcription factor FOXP1 and anti-apoptotic protein BCL2 have been inconsistent and should be assessed in immunochemotherapy-treated DLBCL patients. The markers were evaluated in a cohort of 117 patients treated with rituximab and chemotherapy. FOXP1 expression could not distinguish between patients, with favourable and those with poor outcomes. In contrast, BCL2-negative DLBCL patients had significantly superior survival relative to BCL2-positive patients. Our results indicate that the immunohistochemically defined cell-of-origin classification in DLBCL has a prognostic impact in the immunochemotherapy era, when the identifying algorithms are based on ABC-associated markers. We also propose that BCL2 negativity is predictive of a favourable outcome. Further investigational efforts are, however, warranted to identify the molecular features of DLBCL that could enable individualized cancer therapy in routine patient care.
Resumo:
Much of what we know regarding the long-term course and outcome of major depressive disorder (MDD) is based on studies of mostly inpatient tertiary level cohorts and samples predating the era of the current antidepressants and the use of maintenance therapies. In addition, there is a lack of studies investigating the comprehensive significance of comorbid axis I and II disorders on the outcome of MDD. The present study forms a part of the Vantaa Depression Study (VDS), a regionally representative prospective and naturalistic cohort study of 269 secondary-level care psychiatric out- and inpatients (aged 20-59) with a new episode of DSM-IV MDD, and followed-up up to five years (n=182) with a life-chart and semistructured interviews. The aim was to investigate the long-term outcome of MDD and risk factors for poor recovery, recurrences, suicidal attempts and diagnostic switch to bipolar disorder, and the association of a family history of different psychiatric disorders on the outcome. The effects of comorbid disorders together with various other predictors from different domains on the outcome were comprehensively investigated. According to this study, the long-term outcome of MDD appears to be more variable when its outcome is investigated among modern, community-treated, secondary-care outpatients compared to previous mostly inpatient studies. MDD was also highly recurrent in these settings, but the recurrent episodes seemed shorter, and the outcome was unlikely to be uniformly chronic. Higher severity of MDD predicted significantly the number of recurrences and longer time spent ill. In addition, longer episode duration, comorbid dysthymic disorder, cluster C personality disorders and social phobia predicted a worse outcome. The incidence rate of suicide attempts varied robustly de¬pending on the level of depression, being 21-fold during major depressive episodes (MDEs), and 4-fold during partial remission compared to periods of full remission. Although a history of previous attempts and poor social support also indicated risk, time spent depressed was the central factor determining overall long-term risk. Switch to bipolar disorder occurred mainly to type II, earlier to type I, and more gradually over time to type II. Higher severity of MDD, comorbid social phobia, obsessive compulsive disorder, and cluster B personality disorder features predicted the diagnostic switch. The majority of patients were also likely to have positive family histories not exclusively of mood, but also of other mental disorders. Having a positive family history of severe mental disorders was likely to be clinically associated with a significantly more adverse outcome.
Resumo:
We set up Wigner distributions for N-state quantum systems following a Dirac-inspired approach. In contrast to much of the work in this study, requiring a 2N x 2N phase space, particularly when N is even, our approach is uniformly based on an N x N phase-space grid and thereby avoids the necessity of having to invoke a `quadrupled' phase space and hence the attendant redundance. Both N odd and even cases are analysed in detail and it is found that there are striking differences between the two. While the N odd case permits full implementation of the marginal property, the even case does so only in a restricted sense. This has the consequence that in the even case one is led to several equally good definitions of the Wigner distributions as opposed to the odd case where the choice turns out to be unique.
Resumo:
We study diagonal estimates for the Bergman kernels of certain model domains in C-2 near boundary points that are of infinite type. To do so, we need a mild structural condition on the defining functions of interest that facilitates optimal upper and lower bounds. This is a mild condition; unlike earlier studies of this sort, we are able to make estimates for non-convex pseudoconvex domains as well. Thisn condition quantifies, in some sense, how flat a domain is at an infinite-type boundary point. In this scheme of quantification, the model domains considered below range-roughly speaking-from being mildly infinite-type'' to very flat at the infinite-type points.
Resumo:
In recent years, spatial variability modeling of soil parameters using random field theory has gained distinct importance in geotechnical analysis. In the present Study, commercially available finite difference numerical code FLAC 5.0 is used for modeling the permeability parameter as spatially correlated log-normally distributed random variable and its influence on the steady state seepage flow and on the slope stability analysis are studied. Considering the case of a 5.0 m high cohesive-frictional soil slope of 30 degrees, a range of coefficients of variation (CoV%) from 60 to 90% in the permeability Values, and taking different values of correlation distance in the range of 0.5-15 m, parametric studies, using Monte Carlo simulations, are performed to study the following three aspects, i.e., (i) effect ostochastic soil permeability on the statistics of seepage flow in comparison to the analytic (Dupuit's) solution available for the uniformly constant permeability property; (ii) strain and deformation pattern, and (iii) stability of the given slope assessed in terms of factor of safety (FS). The results obtained in this study are useful to understand the role of permeability variations in slope stability analysis under different slope conditions and material properties. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The thermally driven Structural phase transition in the organic-inorganic hybrid perovskite (CnH2n+1NH3)(2)PbI4 has been investigated using molecular dynamics (MD) simulations. This system consists of positively charged alkyl-amine chains anchored to a rigid negatively charged PbI4 sheet with the chains organized as bilayers with a herringbone arrangement. Atomistic simulations were performed using ail isothermal-isobaric ensemble over a wide temperature range from 65 to 665 K for different alkyl chain lengths, n = 12, 14, 16, and 18. The simulations are able to reproduce the essential Features of the experimental observations of this system, including the existence of a transition, the linear variation of the transition temperature with alkyl chain length, and the expansion of the bilayer thickness at the transition. By use of the distance fluctuation Criteria, it is Shown that the transition is associated With a Melting of the alkyl chains of the anchored bilayer. Ail analysis of the conformation of the alkyl chains shows increased disorder in the form of gauche defects above due melting transition. Simulations also show that the melting transition is characterized by the complete disappearance of all-trans alkyl chains in the anchored bilayer, in agreement with experimental observations. A conformationally disordered chain has a larger effective cross-sectional area, and above due transition a uniformly tilted arrangement of the anchored chains call no longer be Sustained. At the melt the angular distribution of the orientation of the chains are 110 longer uniform; the chains are splayed allowing for increased space for individual chains of the anchored bilayer. This is reflected in a sharp rise in the ratio of the mean head-to-head to tail-to-tail distance of the chains of the bilayer at the transition resulting in in expansion of the bilayer thickness. The present MD simulations provide a simple explanation as to how changes in conformation of individual alkyl-chains gives rise to the observed increase in the interlayer lattice spacing of (CnH2n+1NH3)(2)PbI4 at the melting transition.
Resumo:
In this paper, we study approximatively τ-compact and τ-strongly Chebyshev sets, where τ is the norm or the weak topology. We show that the metric projection onto τ-strongly Chebyshev sets are norm-τ continuous. We characterize approximatively τ-compact and τ-strongly Chebyshev hyperplanes and use them to characterize factor reflexive proximinal subspaces in τ-almost locally uniformly rotund spaces. We also prove some stability results on approximatively τ-compact and τ-strongly Chebyshev subspaces.
Resumo:
Knowledge of the physical properties of asteroids is crucial in many branches of solar-system research. Knowledge of the spin states and shapes is needed, e.g., for accurate orbit determination and to study the history and evolution of the asteroids. In my thesis, I present new methods for using photometric lightcurves of asteroids in the determination of their spin states and shapes. The convex inversion method makes use of a general polyhedron shape model and provides us at best with an unambiguous spin solution and a convex shape solution that reproduces the main features of the original shape. Deriving information about the non-convex shape features is, in principle, also possible, but usually requires a priori information about the object. Alternatively, a distribution of non-convex solutions, describing the scale of the non-convexities, is also possible to be obtained. Due to insufficient number of absolute observations and inaccurately defined asteroid phase curves, the $c/b$-ratio, i.e., the flatness of the shape model is often somewhat ill-defined. However, especially in the case of elongated objects, the flatness seems to be quite well constrained, even in the case when only relative lightcurves are available. The results prove that it is, contrary to the earlier misbelief, possible to derive shape information from the lightcurve data if a sufficiently wide range of observing geometries is covered by the observations. Along with the more accurate shape models, also the rotational states, i.e., spin vectors and rotation periods, are defined with improved accuracy. The shape solutions obtained so far reveal a population of irregular objects whose most descriptive shape characteristics, however, can be expressed with only a few parameters. Preliminary statistical analyses for the shapes suggests that there are correlations between shape and other physical properties, such as the size, rotation period and taxonomic type of the asteroids. More shape data of, especially, the smallest and largest asteroids, as well as the fast and slow rotators is called for in order to be able to study the statistics more thoroughly.