940 resultados para Underwater Acoustics
Resumo:
This paper aims to assess the impact of environmental noise in the vicinity of primary schools and to analyze its influence in the workplace and in student performance through perceptions and objective evaluation. The subjective evaluation consisted of the application of questionnaires to students and teachers, and the objective assessment consisted of measuring in situ noise levels. The survey covered nine classes located in three primary schools. Statistical Package for Social Sciences was used for data processing and to draw conclusions. Additionally, the relationship of the difference between environmental and background noise levels of each classroom and students with difficulties in hearing the teacherâ s voice was examined. Noise levels in front of the school, the schoolyard, and the most noise-exposed classrooms (occupied and unoccupied) were measured. Indoor noise levels were much higher than World Health Organization (WHO) recommended values: LAeq,30min averaged 70.5 dB(A) in occupied classrooms, and 38.6 dB(A) in unoccupied ones. Measurements of indoor and outdoor noise suggest that noise from the outside (road, schoolyard) affects the background noise level in classrooms but in varying degrees. It was concluded that the façades most exposed to road traffic noise are subjected to values higher than 55.0 dB(A), and noise levels inside the classrooms are mainly due to the schoolyard, students, and the road traffic. The difference between background (LA95,30min) and the equivalent noise levels (LAeq,30min) in occupied classrooms was 19.2 dB(A), which shows that studentsâ activities are a significant source of classroom noise.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
The objective of this study was to analyze the diet of fish species that use the mangrove vegetation for shelter and feeding in a river southeastern Brazil. The fieldwork, including collecting and underwater observations, was carried out in the dry (July and August 2004) and in the rainy season (February and March 2005) in order to assess the existence of seasonal variation in the diets. Seven kinds of food items were consumed, two of plant origin and five of animal origin. Crustaceans predominated in the diet of most species, either in the form of unidentified fragments or discriminated in eight groups. The predominance of species using mainly a single food source (crustaceans, principally Ostracoda and Tanaidacea) and the existence of seasonal variation in the diets of some species became very evident in the analysis food niche breadth, with a predominance of dietary specialists. In the Rio da Fazenda mangrove, the submersed marginal vegetation was used by the ichthyofauna as a locale for foraging, and principally as cover by bottom-feeding species. These species may be using the vegetation for protection from aerial and aquatic predators, or even from the pull of the current during the turn of the tide. In the study area, the great diversity of crustaceans constitutes an important food source for most fish species which adjusted their diet according to seasonal changes in food availability and to interactions with other species.
Resumo:
This study introduces a novel approach for automatic temporal phase detection and inter-arm coordination estimation in front-crawl swimming using inertial measurement units (IMUs). We examined the validity of our method by comparison against a video-based system. Three waterproofed IMUs (composed of 3D accelerometer, 3D gyroscope) were placed on both forearms and the sacrum of the swimmer. We used two underwater video cameras in side and frontal views as our reference system. Two independent operators performed the video analysis. To test our methodology, seven well-trained swimmers performed three 300 m trials in a 50 m indoor pool. Each trial was in a different coordination mode quantified by the index of coordination. We detected different phases of the arm stroke by employing orientation estimation techniques and a new adaptive change detection algorithm on inertial signals. The difference of 0.2 +/- 3.9% between our estimation and video-based system in assessment of the index of coordination was comparable to experienced operators' difference (1.1 +/- 3.6%). The 95% limits of agreement of the difference between the two systems in estimation of the temporal phases were always less than 7.9% of the cycle duration. The inertial system offers an automatic easy-to-use system with timely feedback for the study of swimming.
Resumo:
Proposes a behavior-based scheme for high-level control of autonomous underwater vehicles (AUVs). Two main characteristics can be highlighted in the control scheme. Behavior coordination is done through a hybrid methodology, which takes in advantages of the robustness and modularity in competitive approaches, as well as optimized trajectories
Resumo:
This paper proposes a hybrid coordination method for behavior-based control architectures. The hybrid method takes advantages of the robustness and modularity in competitive approaches as well as optimized trajectories in cooperative ones. This paper shows the feasibility of applying this hybrid method with a 3D-navigation to an autonomous underwater vehicle (AUV). The behaviors are learnt online by means of reinforcement learning. A continuous Q-learning implemented with a feed-forward neural network is employed. Realistic simulations were carried out. The results obtained show the good performance of the hybrid method on behavior coordination as well as the convergence of the behaviors
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior
Resumo:
This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task
Resumo:
When underwater vehicles navigate close to the ocean floor, computer vision techniques can be applied to obtain motion estimates. A complete system to create visual mosaics of the seabed is described in this paper. Unfortunately, the accuracy of the constructed mosaic is difficult to evaluate. The use of a laboratory setup to obtain an accurate error measurement is proposed. The system consists on a robot arm carrying a downward looking camera. A pattern formed by a white background and a matrix of black dots uniformly distributed along the surveyed scene is used to find the exact image registration parameters. When the robot executes a trajectory (simulating the motion of a submersible), an image sequence is acquired by the camera. The estimated motion computed from the encoders of the robot is refined by detecting, to subpixel accuracy, the black dots of the image sequence, and computing the 2D projective transform which relates two consecutive images. The pattern is then substituted by a poster of the sea floor and the trajectory is executed again, acquiring the image sequence used to test the accuracy of the mosaicking system
Resumo:
This paper describes the improvements achieved in our mosaicking system to assist unmanned underwater vehicle navigation. A major advance has been attained in the processing of images of the ocean floor when light absorption effects are evident. Due to the absorption of natural light, underwater vehicles often require artificial light sources attached to them to provide the adequate illumination for processing underwater images. Unfortunately, these flashlights tend to illuminate the scene in a nonuniform fashion. In this paper a technique to correct non-uniform lighting is proposed. The acquired frames are compensated through a point-by-point division of the image by an estimation of the illumination field. Then, the gray-levels of the obtained image remapped to enhance image contrast. Experiments with real images are presented
Resumo:
This paper deals with the problem of navigation for an unmanned underwater vehicle (UUV) through image mosaicking. It represents a first step towards a real-time vision-based navigation system for a small-class low-cost UUV. We propose a navigation system composed by: (i) an image mosaicking module which provides velocity estimates; and (ii) an extended Kalman filter based on the hydrodynamic equation of motion, previously identified for this particular UUV. The obtained system is able to estimate the position and velocity of the robot. Moreover, it is able to deal with visual occlusions that usually appear when the sea bottom does not have enough visual features to solve the correspondence problem in a certain area of the trajectory