921 resultados para Uncertainty Avoidance
Resumo:
A design methodology based on numerical modelling, integrated with optimisation techniques and statistical methods, to aid the process control of micro and nano-electronics based manufacturing processes is presented in this paper. The design methodology is demonstrated for a micro-machining process called Focused Ion Beam (FIB). This process has been modelled to help understand how a pre-defined geometry of micro- and nano- structures can be achieved using this technology. The process performance is characterised on the basis of developed Reduced Order Models (ROM) and are generated using results from a mathematical model of the Focused Ion Beam and Design of Experiment (DoE) methods. Two ion beam sources, Argon and Gallium ions, have been used to compare and quantify the process variable uncertainties that can be observed during the milling process. The evaluations of the process performance takes into account the uncertainties and variations of the process variables and are used to identify their impact on the reliability and quality of the fabricated structure. An optimisation based design task is to identify the optimal process conditions, by varying the process variables, so that certain quality objectives and requirements are achieved and imposed constraints are satisfied. The software tools used and developed to demonstrate the design methodology are also presented.
Resumo:
Assigning uncertainty to ocean-color satellite products is a requirement to allow informed use of these data. Here, uncertainty estimates are derived using the comparison on a 12th-degree grid of coincident daily records of the remote-sensing reflectance RRS obtained with the same processing chain from three satellite missions, MERIS, MODIS and SeaWiFS. The approach is spatially resolved and produces σ, the part of the RRS uncertainty budget associated with random effects. The global average of σ decreases with wavelength from approximately 0.7– 0.9 10−3 sr−1 at 412 nm to 0.05–0.1 10−3 sr−1 at the red band, with uncertainties on σ evaluated as 20–30% between 412 and 555 nm, and 30–40% at 670 nm. The distribution of σ shows a restricted spatial variability and small variations with season, which makes the multi-annual global distribution of σ an estimate applicable to all retrievals of the considered missions. The comparison of σ with other uncertainty estimates derived from field data or with the support of algorithms provides a consistent picture. When translated in relative terms, and assuming a relatively low bias, the distribution of σ suggests that the objective of a 5% uncertainty is fulfilled between 412 and 490 nm for oligotrophic waters (chlorophyll-a concentration below 0.1 mg m−3). This study also provides comparison statistics. Spectrally, the mean absolute relative difference between RRS from different missions shows a characteristic U-shape with both ends at blue and red wavelengths inversely related to the amplitude of RRS. On average and for the considered data sets, SeaWiFS RRS tend to be slightly higher than MODIS RRS, which in turn appear higher than MERIS RRS. Biases between mission-specific RRS may exhibit a seasonal dependence, particularly in the subtropical belt.
Resumo:
This paper is concerned with handling uncertainty as part of the analysis of data from a medical study. The study is investigating connections between the birth weight of babies and the dietary intake of their mothers. Bayesian belief networks were used in the analysis. Their perceived benefits include (i) an ability to represent the evidence emerging from the evolving study, dealing effectively with the inherent uncertainty involved; (ii) providing a way of representing evidence graphically to facilitate analysis and communication with clinicians; (iii) helping in the exploration of the data to reveal undiscovered knowledge; and (iv) providing a means of developing an expert system application.
Resumo:
In this paper we describe how an evidential-reasoner can be used as a component of risk assessment of engineering projects using a direct way of reasoning. Guan & Bell (1991) introduced this method by using the mass functions to express rule strengths. Mass functions are also used to express data strengths. The data and rule strengths are combined to get a mass distribution for each rule; i.e., the first half of our reasoning process. Then we combine the prior mass and the evidence from the different rules; i.e., the second half of the reasoning process. Finally, belief intervals are calculated to help in identifying the risks. We apply our evidential-reasoner on an engineering project and the results demonstrate the feasibility and applicability of this system in this environment.