994 resultados para Transport density
Resumo:
We consider the statistical properties of the local density of states of a one-dimensional Dirac equation in the presence of various types of disorder with Gaussian white-noise distribution. It is shown how either the replica trick or supersymmetry can be used to calculate exactly all the moments of the local density of states.' Careful attention is paid to how the results change if the local density of states is averaged over atomic length scales. For both the replica trick and supersymmetry the problem is reduced to finding the ground state of a zero-dimensional Hamiltonian which is written solely in terms of a pair of coupled spins which are elements of u(1, 1). This ground state is explicitly found for the particular case of the Dirac equation corresponding to an infinite metallic quantum wire with a single conduction channel. The calculated moments of the local density of states agree with those found previously by Al'tshuler and Prigodin [Sov. Phys. JETP 68 (1989) 198] using a technique based on recursion relations for Feynman diagrams. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Many non-steroidal anti-inflammatory drugs (NSAIDs) which form acyl glucuronide conjugates as major metabolites have shown an antiproliferative effect on colorectal tumors. This study assesses the extent to which rearrangement of an acyl glucuronide metabolite of a model NSAID into beta -glucuronidase-resistant isomers facilitates its passage through the small intestine to reach the colon. Rats were dosed orally with diflunisal (DF), its acyl glucuronide (DAG) and a mixture of rearrangement isomers (iso-DAG) at 10 mg DF equivalents/kg. The parent drug DF appeared in plasma after all doses, with maximum concentrations of 20.5 +/- 2.5, 28.8 +/- 8.3 and 11.0 +/- 1.6 mug DF/ml respectively, obtained at 3.8 +/- 0.3, 3.6 +/- 1.8 and 7.5 +/- 0.9 hr after the DF, DAG and iso-DAG doses respectively. At 48 hr, 16.2 +/- 3.3, 19.8 +/- 0.8 and 42.9 +/- 10.1% of the doses respectively were recovered in feces, with less than or equal to 1% remaining in the intestine. About half of each dose was recovered as DF and metabolites in 48 hr urine: for DF and DAG doses, the majority was in the first 24 hr urine. whereas for iso-DAG doses, recoveries in the first and second 24 hr periods were similar. The results show that hydrolysis of both DAG and iso-DAG, and absorption of liberated DF, occur during passage through the gut, but that these processes occur more slowly and to a lesser degree for iso-DAG. The intrinsic hydrolytic capacities of various intestinal segments (including contents) towards DAG and iso-DAG were obtained by incubating homogenates under saturating concentrations of DAG/iso-DAG at 37 degreesC. Upper small intestine, lower small intestine, caecum and colon released 2400, 3200, 9200 and 22800 mug DF/hr/g tissue plus contents respectively from DAG substrate, and 18, 10, 140 and 120 mug DF/hr/g tissue plus contents respectively from iso-DAG substrate. The much greater resistance of iso-DAG to hydrolysis appears attributable to its resistance to beta -glucuronidases. The data suggest that in rats dosed with DF, DAG excreted in bile would be substantially hydrolysed in the small intestine and liberated DF reabsorbed, but that portion which rearranges to iso-DAG would likely reach the colon. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Some efficient solution techniques for solving models of noncatalytic gas-solid and fluid-solid reactions are presented. These models include those with non-constant diffusivities for which the formulation reduces to that of a convection-diffusion problem. A singular perturbation problem results for such models in the presence of a large Thiele modulus, for which the classical numerical methods can present difficulties. For the convection-diffusion like case, the time-dependent partial differential equations are transformed by a semi-discrete Petrov-Galerkin finite element method into a system of ordinary differential equations of the initial-value type that can be readily solved. In the presence of a constant diffusivity, in slab geometry the convection-like terms are absent, and the combination of a fitted mesh finite difference method with a predictor-corrector method is used to solve the problem. Both the methods are found to converge, and general reaction rate forms can be treated. These methods are simple and highly efficient for arbitrary particle geometry and parameters, including a large Thiele modulus. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Dispersal, or the amount of dispersion between an individual's birthplace and that of its offspring, is of great importance in population biology, behavioural ecology and conservation, however, obtaining direct estimates from field data on natural populations can be problematic. The prickly forest skink, Gnypetoscincus queenslandiae, is a rainforest endemic skink from the wet tropics of Australia. Because of its log-dwelling habits and lack of definite nesting sites, a demographic estimate of dispersal distance is difficult to obtain. Neighbourhood size, defined as 4 piD sigma (2) (where D is the population density and sigma (2) the mean axial squared parent-offspring dispersal rate), dispersal and density were estimated directly and indirectly for this species using mark-recapture and microsatellite data, respectively, on lizards captured at a local geographical scale of 3 ha. Mark-recapture data gave a dispersal rate of 843 m(2)/generation (assuming a generation time of 6.5 years), a time-scaled density of 13 635 individuals * generation/km(2) and, hence, a neighbourhood size of 144 individuals. A genetic method based on the multilocus (10 loci) microsatellite genotypes of individuals and their geographical location indicated that there is a significant isolation by distance pattern, and gave a neighbourhood size of 69 individuals, with a 95% confidence interval between 48 and 184. This translates into a dispersal rate of 404 m(2)/generation when using the mark-recapture density estimation, or an estimate of time-scaled population density of 6520 individuals * generation/km(2) when using the mark-recapture dispersal rate estimate. The relationship between the two categories of neighbourhood size, dispersal and density estimates and reasons for any disparities are discussed.
Resumo:
The membrane-bound ceruloplasmin homolog hephaestin plays a critical role in intestinal iron absorption. The aims of this study were to clone the rat hephaestin gene and to examine its expression in the gastrointestinal tract in relation to other genes encoding iron transport proteins. The rat hephaestin gene was isolated from intestinal mRNA and was found to encode a protein 96% identical to mouse hephaestin. Analysis by ribonuclease protection assay and Western blotting showed that hephaestin was expressed at high levels throughout the small intestine and colon. Immunofluorescence localized the hephaestin protein to the mature villus enterocytes with little or no expression in the crypts. Variations in iron status had a small but nonsignificant effect on hephaestin expression in the duodenum. The high sequence conservation between rat and mouse hephaestin is consistent with this protein playing a central role in intestinal iron absorption, although its precise function remains to be determined.
Resumo:
Early endosomal antigen I (EEAI) is known to be a marker of early endosomes and in cultured hippocampal neurons it preferentially localizes to the dendritic but not the axonal compartment. We show in cultured dorsal root ganglia and superior cervical ganglia neurons that EEAI localizes to the cell bodies and the neurites of both sensory and sympathetic neurons. We then show in vivo using a ligated rat sciatic nerve that EEAI significantly accumulates on the proximal side and not on the distal side of the ligation. This suggests that EEAI is transported in the anterograde direction in axons either as part of the homeostatic process or to the nerve ligation site in response to nerve injury. NeuroReport 12:281-284 (C) 2001 Lippincott Williams & Wilkins.
Resumo:
In this work, a new method of optimization is successfully applied to the theoretical design of compact, actively shielded, clinical MRI magnets. The problem is formulated as a two-step process in which the desired current densities on multiple, cc-axial surface layers are first calculated by solving Fredholm equations of the first kind. Non-linear optimization methods with inequality constraints are then invoked to fit practical magnet coils to the desired current densities. The current density approach allows rapid prototyping of unusual magnet designs. The emphasis of this work is on the optimal design of short, actively-shielded MRI magnets for whole-body imaging. Details of the hybrid numerical model are presented, and the model is used to investigate compact, symmetric, and asymmetric MRI magnets. Magnet designs are presented for actively-shielded, symmetric magnets of coil length 1.0 m, which is considerably shorter than currently available designs of comparable dsv size. Novel, actively-shielded, asymmetric magnet designs are also presented in which the beginning of a 50-cm dsv is positioned just 11 cm from the end of the coil structure, allowing much improved access to the patient and reduced patient claustrophobia. Magn Reson Med 45:331540, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
Insulin stimulates glucose transport in adipocytes and muscle cells by triggering redistribution of the GLUT4 glucose transporter from an intracellular perinuclear location to the cell surface. Recent reports have shown that the microtubule-depolymerizing agent nocodazole inhibits insulin-stimulated glucose transport, implicating an important role for microtubules in this process. In the present study we show that 2 mum nocodazole completely depolymerized microtubules in 3T3-L1 adipocytes, as determined morphologically and biochemically, resulting in dispersal of the perinuclear GLUT4 compartment and the Golgi apparatus. However, 2 mum nocodazole did not significantly effect either the kinetics or magnitude of insulin-stimulated glucose transport. Consistent with previous studies, higher concentrations of nocodazole (10-33 mum) significantly inhibited basal and insulin-stimulated glucose uptake in adi. pocytes. This effect was not likely the result of microtubule depolymerization because in the presence of taxol, which blocked nocodazole-induced depolymerization of microtubules as well as the dispersal of the perinuclear GLUT4 compartment, the inhibitory effect of 10-33 muM nocodazole on insulin-stimulated glucose uptake prevailed. Despite the decrease in insulin-stimulated glucose transport with 33 muM nocodazole we did not observe inhibition of insulin-stimulated GLUT4 translocation to the cell surface under these conditions. Consistent with a direct effect of nocodazole on glucose transporter function we observed a rapid inhibitory effect of nocodazole on glucose transport activity when added to either 3T3-L1 adipocytes or to Chinese hamster ovary cells at 4 degreesC. These studies reveal a new and unexpected effect of nocodazole in mammalian cells which appears to occur independently of its microtubule-depolymerizing effects.
Resumo:
We have examined the requirement for Ca2+ in the signaling and trafficking pathways involved in insulin-stimulated glucose uptake in 3T3-LI adipocytes. Chelation of intracellular Ca2+, using 1,2-bis (o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester (BAPTA-AM), resulted in >95% inhibition of insulin-stimulated glucose uptake. The calmodulin antagonist, W13, inhibited insulin-stimulated glucose uptake by 60%. Both BAPTA-AM and W13 inhibited Akt phosphorylation by 70-75%. However, analysis of insulin-dose response curves indicated that this inhibition was not sufficient to explain the effects of BAPTA-AM and W13 on glucose uptake. BAPTA-AM inhibited insulin-stimulated translocation of GLUT4 by 50%, as determined by plasma membrane lawn assay and subcellular fractionation. In contrast, the insulin-stimulated appearance of HA-tagged GLUT4 at the cell surface, as measured by surface binding, was blocked by BAPTA/AM.. While the ionophores A23187 or ionomycin prevented the inhibition of Akt phosphorylation and GLUT4 translocation by BAPTA-AM, they did not overcome the inhibition of glucose transport. Moreover, glucose uptake of cells pretreated with insulin followed by rapid cooling to 4 degreesC, to promote cell surface expression of GLUT4 and prevent subsequent endocytosis, was inhibited specifically by BAPTA-AM. This indicates that inhibition of glucose uptake by BAPTA-AM is independent of both trafficking and signal transduction. These data indicate that Ca2+ is involved in at least two different steps of the insulin-dependent recruitment of GLUT4 to the plasma membrane. One involves the translocation step. The second involves the fusion of GLUT4 vesicles with the plasma membrane. These data are consistent with the hypothesis that Ca2+/cahnodulin plays a fundamental role in eukaryotic vesicle docking and fusion. Finally, BAPTA-AM may inhibit the activity of the facilitative transporters by binding directly to the transporter itself.
Resumo:
Koala (Phascolarctos cinereus) populations in eastern Australia are threatened by land clearing for agricultural and urban development. At the same time, conservation efforts are hindered by a dearth of information about inland populations. Faecal deposits offer a source of information that is readily available and easily collected non-invasively. We detail a faecal pellet sampling protocol that was developed for use in a large rangeland biogeographic region. The method samples trees in belt transects, uses a thorough search at the tree base to quickly identify trees with koala pellets under them, then estimates the abundance of faecal pellets under those trees using 1-m(2) quadrats. There was a strong linear relationship between these estimates and a complete enumeration of pellet abundance under the same trees. We evaluated the accuracy of our method in detecting trees where pellets were present by means of a misclassification index that was weighed more heavily for missed trees that had high numbers of pellets under them. This showed acceptable accuracy in all landforms except riverine, where some trees with large numbers of pellets were missed. Here, accuracy in detecting pellet presence was improved by sampling with quadrats, rather than basal searches. Finally, we developed a method to reliably age pellets and demonstrate how this protocol could be used with the faecal-standing-crop method to derive a regional estimate of absolute koala abundance.
Resumo:
Direct comparisons between photosynthetic O-2 evolution rate and electron transport rate (ETR) were made in situ over 24 h using the benthic macroalga Ulva lactuca (Chlorophyta), growing and measured at a depth of 1.8 m, where the midday irradiance rose to 400-600 mumol photons m(-2) s(-1). O-2 exchange was measured with a 5-chamber data-logging apparatus and ETR with a submersible pulse amplitude modulated (PAM) fluorometer (Diving-PAM). Steady-state quantum yield ((Fm'-Ft)/Fm') decreased from 0.7 during the morning to 0.45 at midday, followed by some recovery in the late afternoon. At low to medium irradiances (0-300 mumol photons m(-2) s(-1)), there was a significant correlation between O-2 evolution and ETR, but at higher irradiances, ETR continued to increase steadily, while O-2 evolution tended towards an asymptote. However at high irradiance levels (600-1200 mumol photons m-(2) s(-1)) ETR was significantly lowered. Two methods of measuring ETR, based on either diel ambient light levels and fluorescence yields or rapid light curves, gave similar results at low to moderate irradiance levels. Nutrient enrichment (increases in [NO3-], [NH4+] and [HPO42-] of 5- to 15-fold over ambient concentrations) resulted in an increase, within hours, in photosynthetic rates measured by both ETR and O-2 evolution techniques. At low irradiances, approximately 6.5 to 8.2 electrons passed through PS II during the evolution of one molecule of O-2, i.e., up to twice the theoretical minimum number of four. However, in nutrient-enriched treatments this ratio dropped to 5.1. The results indicate that PAM fluorescence can be used as a good indication of the photosynthetic rate only at low to medium irradiances.
Resumo:
Novel current density mapping (CDM) schemes are developed for the design of new actively shielded, clinical magnetic resonance imaging (MRI) magnets. This is an extended inverse method in which the entire potential solution space for the superconductors has been considered, rather than single current density layers. The solution provides an insight into the required superconducting coil pattern for a desired magnet configuration. This information is then used as an initial set of parameters for the magnet structure, and a previously developed hybrid numerical optimization technique is used to obtain the final geometry of the magnet. The CDM scheme is applied to the design of compact symmetric, asymmetric, and open architecture 1.0-1.5 T MRI magnet systems of novel geometry and utility. A new symmetric 1.0-T system that is just I m in length with a full 50-cm diameter of the active, or sensitive, volume (DSV) is detailed, as well as an asymmetric system in which a 50-cm DSV begins just 14 cm from the end of the coil structure. Finally a 1.0-T open magnet system with a full 50-cm DSV is presented. These new designs provide clinically useful homogeneous regions and have appropriately restricted stray fields but, in some of the designs, the DSV is much closer to the end of the magnet system than in conventional designs. These new designs have the potential to reduce patient claustrophobia and improve physician access to patients undergoing scans. (C) 2002 Wiley Periodicals, Inc.
Resumo:
Motivated by recent experiments on electric transport through single molecules and quantum dots, we investigate a model for transport that allows for significant coupling between the electrons and a boson mode isolated on the molecule or dot. We focus our attention on the temperature-dependent properties of the transport. In the Holstein picture for polaronic transport in molecular crystals the temperature dependence of the conductivity exhibits a crossover from coherent (band) to incoherent (hopping) transport. Here, the temperature dependence of the differential conductance on resonance does not show such a crossover, but is mostly determined by the lifetime of the resonant level on the molecule or dot.