928 resultados para Transient
Resumo:
Abstract
INTRODUCTION:
Transient receptor potential (TRP) channels comprise a group of nonselective calcium-permeable cationic channels, which are polymodal sensors of environmental stimuli such as thermal changes and chemicals. TRPM8 and TRPA1 are cold-sensing TRP channels activated by moderate cooling and noxious cold temperatures, respectively. Both receptors have been identified in trigeminal ganglion neurones, and their expression in nonneuronal cells is now the focus of much interest. The aim of this study was to investigate the molecular and functional expression of TRPA1 and TRPM8 in dental pulp fibroblasts.
METHODS:
Human dental pulp fibroblasts were derived from healthy molar teeth. Gene and protein expression was determined by polymerase chain reaction and Western blotting. Cellular localization was investigated by immunohistochemistry, and TRP functionality was determined by Ca(2+) microfluorimetry.
RESULTS:
Polymerase chain reaction and Western blotting showed gene and protein expression of both TRPA1 and TRPM8 in fibroblast cells in culture. Immunohistochemistry studies showed that TRPA1 and TRPM8 immunoreactivity co-localized with the human fibroblast surface protein. In Ca(2+) microfluorimetry studies designed to determine the functionality of TRPA1 and TRPM8 in pulp fibroblasts, we showed increased intracellular calcium ([Ca(2+)](i)) in response to the TRPM8 agonist menthol, the TRPA1 agonist cinnamaldehyde, and to cool and noxious cold stimuli, respectively. The responses to agonists and thermal stimuli were blocked in the presence of specific TRPA1 and TRPM8 antagonists.
CONCLUSIONS:
Human dental pulp fibroblasts express TRPA1 and TRPM8 at the molecular, protein, and functional levels, indicating a possible role for fibroblasts in mediating cold responses in human teeth.
Resumo:
We accurately determine the fundamental system parameters of the neutron star X-ray transient Cen X-4 solely using phase-resolved high-resolution UV-Visual Echelle Spectrograph spectroscopy. We first determine the radial-velocity curve of the secondary star and then model the shape of the phase-resolved absorption line profiles using an X-ray binary model. The model computes the exact rotationally broadened, phase-resolved spectrum and does not depend on assumptions about the rotation profile, limb-darkening coefficients and the effects of contamination from an accretion disc. We determine the secondary star-to-neutron star binary mass ratio to be 0.1755 ± 0.0025, which is an order of magnitude more accurate than previous estimates. We also constrain the inclination angle to be 32^{+8}_{-2} degrees. Combining these values with the results of the radial-velocity study gives a neutron star mass of 1.94^{+0.37}_{-0.85}M⊙ consistent with previous estimates. Finally, we perform the first Roche tomography reconstruction of the secondary star in an X-ray binary. The tomogram reveals surface inhomogeneities that are due to the presence of cool starspots. A large cool polar spot, similar to that seen in Doppler images of rapidly rotating isolated stars, is present on the Northern hemisphere of the K7 secondary star and we estimate that ~4 percent of the total surface area of the donor star is covered with spots.This evidence for starspots supports the idea that magnetic braking plays an important role in the evolution of low-mass X-ray binaries.
Resumo:
A 2D sandbox style experiment was developed to compare the results of numerical modelling to physical testing for saltwater intrusion in homogeneous and heterogeneous aquifers. The sandbox consisted of a thin central viewing chamber filled with glass beads of varying diameters (780μm, 1090μm and 1325μm) under fully saturated conditions. Dyed saltwater (SW) was introduced at the side boundary and a head difference imposed across the porous media. Images of the SW wedge were recorded at intervals in order to assess the suitability of the numerical models predictions of transient SW intrusion. Numerical modelling of the experimental cases were simulated using SUTRA. Two main parameters were chosen to express the condition of the intruding SW wedge at each recorded time step; the toe penetration length (TL) and the width of the mixing zone (WMZ). The WMZ was larger under transient conditions in the heterogeneous case, while the TL was longer for the homogeneous case. The increased variability in the flow field fo the heterogeneous case resulted in increased dispersion, and thus, increased WMZ.
Resumo:
The original goals of the JET ITER-like wall included the study of the impact of an all W divertor on plasma operation (Coenen et al 2013 Nucl. Fusion 53 073043) and fuel retention (Brezinsek et al 2013 Nucl. Fusion 53 083023). ITER has recently decided to install a full-tungsten (W) divertor from the start of operations. One of the key inputs required in support of this decision was the study of the possibility of W melting and melt splashing during transients. Damage of this type can lead to modifications of surface topology which could lead to higher disruption frequency or compromise subsequent plasma operation. Although every effort will be made to avoid leading edges, ITER plasma stored energies are sufficient that transients can drive shallow melting on the top surfaces of components. JET is able to produce ELMs large enough to allow access to transient melting in a regime of relevance to ITER.
Transient W melt experiments were performed in JET using a dedicated divertor module and a sequence of I-P = 3.0 MA/B-T = 2.9 T H-mode pulses with an input power of P-IN = 23 MW, a stored energy of similar to 6 MJ and regular type I ELMs at Delta W-ELM = 0.3 MJ and f(ELM) similar to 30 Hz. By moving the outer strike point onto a dedicated leading edge in the W divertor the base temperature was raised within similar to 1 s to a level allowing transient, ELM-driven melting during the subsequent 0.5 s. Such ELMs (delta W similar to 300 kJ per ELM) are comparable to mitigated ELMs expected in ITER (Pitts et al 2011 J. Nucl. Mater. 415 (Suppl.) S957-64).
Although significant material losses in terms of ejections into the plasma were not observed, there is indirect evidence that some small droplets (similar to 80 mu m) were released. Almost 1 mm (similar to 6 mm(3)) of W was moved by similar to 150 ELMs within 7 subsequent discharges. The impact on the main plasma parameters was minor and no disruptions occurred. The W-melt gradually moved along the leading edge towards the high-field side, driven by j x B forces. The evaporation rate determined from spectroscopy is 100 times less than expected from steady state melting and is thus consistent only with transient melting during the individual ELMs. Analysis of IR data and spectroscopy together with modelling using the MEMOS code Bazylev et al 2009 J. Nucl. Mater. 390-391 810-13 point to transient melting as the main process. 3D MEMOS simulations on the consequences of multiple ELMs on damage of tungsten castellated armour have been performed.
These experiments provide the first experimental evidence for the absence of significant melt splashing at transient events resembling mitigated ELMs on ITER and establish a key experimental benchmark for the MEMOS code.
Resumo:
An issue on Networked Performance produceed by Neural for which I was invited to deliver an interview on network performance. Neural is a printed magazine established in 1993 dealing with new media art, electronic music and hacktivism. It was founded by Alessandro Ludovico and Minus Habens Records label owner Ivan Iusco in Bari (Italy).
Resumo:
The energetics of the low-temperature adsorption and decomposition of nitrous oxide, N(2)O, on flat and stepped platinum surfaces were calculated using density-functional theory (DFT). The results show that the preferred adsorption site for N(2)O is an atop site, bound upright via the terminal nitrogen. The molecule is only weakly chemisorbed to the platinum surface. The decomposition barriers on flat (I 11) surfaces and stepped (211) surfaces are similar. While the barrier for N(2)O dissociation is relatively small, the surface rapidly becomes poisoned by adsorbed oxygen. These findings are supported by experimental results of pulsed N(2)O decomposition with 5% Pt/SiO(2) and bismuth-modified Pt/C catalysts. At low temperature, decomposition occurs but self-poisoning by O((ads)) prevents further decomposition. At higher temperatures some desorption Of O(2) is observed, allowing continued catalytic activity. The study with bismuth-modified Pt/C catalysts showed that, although the activation barriers calculated for both terraces and steps were similar, the actual rate was different for the two surfaces. Steps were found experimentally to be more active than terraces and this is attributed to differences in the preexponential term. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Efficient identification and follow-up of astronomical transients is hindered by the need for humans to manually select promising candidates from data streams that contain many false positives. These artefacts arise in the difference images that are produced by most major ground-based time-domain surveys with large format CCD cameras. This dependence on humans to reject bogus detections is unsustainable for next generation all-sky surveys and significant effort is now being invested to solve the problem computationally. In this paper, we explore a simple machine learning approach to real-bogus classification by constructing a training set from the image data of similar to 32 000 real astrophysical transients and bogus detections from the Pan-STARRS1 Medium Deep Survey. We derive our feature representation from the pixel intensity values of a 20 x 20 pixel stamp around the centre of the candidates. This differs from previous work in that it works directly on the pixels rather than catalogued domain knowledge for feature design or selection. Three machine learning algorithms are trained (artificial neural networks, support vector machines and random forests) and their performances are tested on a held-out subset of 25 per cent of the training data. We find the best results from the random forest classifier and demonstrate that by accepting a false positive rate of 1 per cent, the classifier initially suggests a missed detection rate of around 10 per cent. However, we also find that a combination of bright star variability, nuclear transients and uncertainty in human labelling means that our best estimate of the missed detection rate is approximately 6 per cent.
Resumo:
Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January - April and August - December inclusive, and typically has allocations of 10 nights per month.
Aims. We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1).
Methods. PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5<sup>m</sup> for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13-18 Å between 3345-9995 Å. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935-2.53 μm and resolutions 23-33 Å) and imaging with broadband JHK<inf>s</inf> filters.
Results. This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012-2013). A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically ∼15%, although a number of spectra will have less reliable absolute flux calibration because of weather and slit losses. Acquisition images for each spectrum are available which, in principle, can allow the user to refine the absolute flux calibration. The standard NIR reduction process does not produce high accuracy absolute spectrophotometry but synthetic photometry with accompanying JHK<inf>s</inf> imaging can improve this. Whenever possible, reduced SOFI images are provided to allow this.
Conclusions. Future data releases will focus on improving the automated flux calibration of the data products. The rapid turnaround between discovery and classification and access to reliable pipeline processed data products has allowed early science papers in the first few months of the survey.