969 resultados para Transcriptional blockage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Krüppel-associated box (KRAB) domain, originally identified as a 75-aa sequence present in numerous Krüppel-type zinc-finger proteins, is a potent DNA-binding-dependent transcriptional repression domain that is believed to function through interaction with the transcriptional intermediary factor 1 (TIF1) β. On the basis of sequence comparison and phylogenetic analysis, we have recently defined three distinct subfamilies of KRAB domains. In the present study, individual members of each subfamily were tested for transcriptional repression and interaction with TIF1β and two other closely related family members (TIF1α and TIF1γ). All KRAB variants were shown, (i) to repress transcription when targeted to DNA through fusion to a heterologous DNA-binding domain in mammalian cells, and (ii) to interact specifically with TIF1β, but not with TIF1α or TIF1γ. Taken together, these results implicate TIF1β as a common transcriptional corepressor for the three distinct subfamilies of KRAB zinc-finger proteins and suggest a high degree of conservation in the molecular mechanism underlying their transcriptional repression activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complexes between the quorum-sensing regulator TraR and its inducing ligand autoinducer (AAI) are soluble in Escherichia coli, whereas apo-TraR is almost completely insoluble. Here we show that the lack of soluble TraR is due in large part to rapid proteolysis, inasmuch as apo-TraR accumulated to high levels in an E. coli strain deficient in Clp and Lon proteases. In pulse labeling experiments, AAI protected TraR against proteolysis only when it was added before the radiolabel. This observation indicates that TraR proteins can productively bind AAI only during their own synthesis on polysomes, whereas fully synthesized apo-TraR proteins are not functional AAI receptors. Purified apo-TraR was rapidly degraded by trypsin to oligopeptides, whereas TraR–AAI complexes were more resistant to trypsin and were cleaved at discrete interdomain linkers, indicating that TraR requires AAI to attain its mature tertiary structure. TraR–AAI complexes eluted from a gel filtration column as dimers and bound DNA as dimers. In contrast, apo-TraR was monomeric, and incubation with AAI under a variety of conditions did not cause dimerization. We conclude that AAI is critical for the folding of nascent TraR protein into its mature tertiary structure and that full-length apo-TraR cannot productively bind AAI and is consequently targeted for rapid proteolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Huntington's disease (HD) is a neurodegenerative disease caused by polyglutamine expansion in the protein huntingtin (htt). Pathogenesis in HD appears to involve the formation of ubiquitinated neuronal intranuclear inclusions containing N-terminal mutated htt, abnormal protein interactions, and the aggregate sequestration of a variety of proteins (noticeably, transcription factors). To identify novel htt-interacting proteins in a simple model system, we used a yeast two-hybrid screen with a Caenorhabditis elegans activation domain library. We found a predicted WW domain protein (ZK1127.9) that interacts with N-terminal fragments of htt in two-hybrid tests. A human homologue of ZK1127.9 is CA150, a transcriptional coactivator with a N-terminal insertion that contains an imperfect (Gln-Ala)38 tract encoded by a polymorphic repeat DNA. CA150 interacted in vitro with full-length htt from lymphoblastoid cells. The expression of CA150, measured immunohistochemically, was markedly increased in human HD brain tissue compared with normal age-matched human brain tissue, and CA150 showed aggregate formation with partial colocalization to ubiquitin-positive aggregates. In 432 HD patients, the CA150 repeat length explains a small, but statistically significant, amount of the variability in the onset age. Our data suggest that abnormal expression of CA150, mediated by interaction with polyglutamine-expanded htt, may alter transcription and have a role in HD pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatotropism is a prominent feature of hepatitis B virus (HBV) infection. Cell lines of nonhepatic origin do not independently support HBV replication. Here, we show that the nuclear hormone receptors, hepatocyte nuclear factor 4 and retinoid X receptor α plus peroxisome proliferator-activated receptor α, support HBV replication in nonhepatic cells by controlling pregenomic RNA synthesis, indicating these liver-enriched transcription factors control a unique molecular switch restricting viral tropism. In contrast, hepatocyte nuclear factor 3 antagonizes nuclear hormone receptor-mediated viral replication, demonstrating distinct regulatory roles for these liver-enriched transcription factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor necrosis factor α (TNFα) acts as a beneficial mediator in the process of host defence. In recent years major interest has focused on the AU-rich elements (AREs) present in the 3′-untranslated region (3′-UTR) of TNFα mRNA as this region plays a pivotal role in post-transcriptional control of TNFα production. Certain stimuli, such as lipopolysaccharides, a component of the Gram-negative bacterial cell wall, have the ability to relinquish the translational suppression of TNFα mRNA imposed by these AREs in macrophages, thereby enabling the efficient production of the TNFα. In this study we show that the polymorphism (GAU trinucleotide insertional mutation) present in the regulatory 3′-UTR of TNFα mRNA of NZW mice results in the hindered binding of RNA-binding proteins, thereby leading to a significantly reduced production of TNFα protein. We also show that the binding of macrophage proteins to the main ARE is also decreased by another trinucleotide (CAU) insertion in the TNFα 3′-UTR. One of the proteins affected by the GAU trinucleotide insertional mutation was identified as HuR, a nucleo-cytoplasmic shuttling protein previously shown to play a prominent role in the stability and translatability of mRNA containing AREs. Since binding of this protein most likely modulates the stability, translational efficiency and transport of TNFα mRNA, these results suggest that mutations in the ARE of TNFα mRNA decrease the production of TNFα protein in macrophages by hindering the binding of HuR to the ARE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tetracycline-controlled gene expression system provides a powerful tool to dissect the functions of gene products. However, it often appears difficult to establish cell lines or transgenic animals stably expressing tetracycline-dependent transactivators, possibly as a result of toxicity of the transactivator domains used. In order to overcome this problem, we developed a novel tetracycline-dependent transactivator that works efficiently in mammalian cells. This transactivator is a fusion of the tet reverse repressor mutant and the transcriptional activating domain of human E2F4, which is ubiquitously expressed in vivo. We demonstrate here that this tetracycline-regulated gene expression system provides a two log transcriptional activation in mammalian cells as assessed by northern blot and luciferase analyses. Combining this system with green fluorescent protein reporter systems or microarray gene expression profiling will facilitate the study of gene function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proto-oncogene c-myc (myc) encodes a transcription factor (Myc) that promotes growth, proliferation and apoptosis. Myc has been suggested to induce these effects by induction/repression of downstream genes. Here we report the identification of potential Myc target genes in a human B cell line that grows and proliferates depending on conditional myc expression. Oligonucleotide microarrays were applied to identify downstream genes of Myc at the level of cytoplasmic mRNA. In addition, we identified potential Myc target genes in nuclear run-on experiments by changes in their transcription rate. The identified genes belong to gene classes whose products are involved in amino acid/protein synthesis, lipid metabolism, protein turnover/folding, nucleotide/DNA synthesis, transport, nucleolus function/RNA binding, transcription and splicing, oxidative stress and signal transduction. The identified targets support our current view that myc acts as a master gene for growth control and increases transcription of a large variety of genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatocyte nuclear factor-4 (HNF4) regulates gene expression by binding to direct repeat motifs of the RG(G/T)TCA sequence separated by one nucleotide (DR1). In this study we demonstrate that endogenous HNF4 present in rat liver nuclear extracts, as well as purified recombinant HNF4, activates transcription from naked DNA templates containing multiple copies of the DR1 element linked to the adenovirus major late promoter. Recombinant HNF4 also activates transcription from the rat cellular retinol binding protein II (CRBPII) promoter in vitro. The region between –105 and –63 bp of this promoter is essential for HNF-mediated transactivation. The addition of a peptide containing the LXXLL motif abolished HNF4-mediated transactivation in vitro suggesting that LXXLL-containing protein factor(s) are involved in HNF4-mediated transactivation in rat liver nuclear extracts. This is the first report on transactivation by HNF4 in a cell-free system derived from rat liver nuclei.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PromEC is an updated compilation of Escherichia coli mRNA promoter sequences. It includes documentation on the location of experimentally identified mRNA transcriptional start sites on the E.coli chromosome, as well as the actual sequences in the promoter region. The database was updated as of July 2000 and includes 472 entries. PromEC is accessible at http://bioinfo.md.huji.ac.il/marg/promec

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RegulonDB is a database on mechanisms of transcription regulation and operon organization in Escherichia coli K-12. The current version has considerably increased numbers of regulatory elements such as promoters, binding sites and terminators. The complete repertoire of known and predicted DNA-binding transcriptional regulators can be considered to be included in this version. The database now distinguishes different allosteric conformations of regulatory proteins indicating the one active in binding and regulating the different promoters. A new set of operon predictions has been incorporated. The relational design has been modified accordingly. Furthermore, a major improvement is a graphic display enabling browsing of the database with a Java-based graphic user interface with three zoom-levels connected to properties of each chromo­somal element. The purpose of these modifications is to make RegulonDB a useful tool and control set for tran­scriptome experiments. RegulonDB can be accessed on the web at the URL: http://www.cifn.unam.mx/Computational_Biology/regulondb/

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yeast transcriptional repressor Tup1, tethered to DNA, represses to strikingly different degrees transcription elicited by members of two classes of activators. Repression in both cases is virtually eliminated by mutation of either member of the cyclin-kinase pair Srb10/11. In contrast, telomeric chromatin affects both classes of activators equally, and in neither case is that repression affected by mutation of Srb10/11. In vitro, Tup1 interacts with RNA polymerase II holoenzyme bearing Srb10 as well as with the separated Srb10. These and other findings indicate that at least one aspect of Tup1's action involves interaction with the RNA polymerase II holoenzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cascade regulatory circuits have been described that control numerous cell processes, and may provide models for the design of artificial circuits with novel properties. Here we describe the design of a transcriptional regulatory cascade to amplify the cell response to a given signal. We used the salicylate-responsive activators of Pseudomonas putida NahR of the naphthalene degradation plasmid NAH7 and XylS2, a mutant regulator of the TOL plasmid for catabolism of m-xylene and their respective cognate promoters Psal and Pm. Control of the expression of xylS2 with the nahR/Psal system permitted either their selective activation with specific effectors for each protein or the simultaneous activation of both of them with salicylate. When cells face the common effector of the two regulators, both the increase in XylS2 concentration and the stimulation of its activity act synergistically on the Pm promoter, amplifying the gene expression capacity by at least one order of magnitude with respect to the individual systems. By changing the hierarchy of regulators, we showed that the specific features of the downstream regulator were crucial for the amplification effect. Directed changes in the effector profile of the regulators allowed the extension of the amplifying system to other molecular signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gene encoding the Ras-related GTPase RhoB-specific is immediate-early inducible by genotoxic treatments. Regulation of transcriptional activation of rhoB is still unclear. Here we show that cells lacking either p53 or c-Fos are not different from wild-type cells with respect to the level of rhoB induction upon UV irradiation, indicating that these transcription factors are not crucial for stimulation of rhoB mRNA expression. Extracts from UV-irradiated and non-irradiated cells revealed similar DNA-binding activities to a 0.17 kb rhoB promoter fragment harboring the functional element(s) necessary for stimulation of rhoB by UV light. By means of immunoprecipitation we found that an ATF-2-specific antibody co-precipitates the 32P-labeled 0.17 kb rhoB fragment, whereas an anti-AP1 antibody did not. Since no consensus sequence for binding of ATF-2 is present within the rhoB promoter, ATF-2 is likely to be associated with another factor that binds to the minimal promoter. Deletion analysis and site-directed mutagenesis of the 0.17 kb rhoB fragment revealed a CCAAT box to be an essential requirement for stimulation of rhoB by UV light and methyl methanesulfonate. Moreover, immunoprecipitation experiments showed that the CCAAT-binding factor NF-YA is complexed with ATF-2. Overall, the data strongly indicate that transcriptional activation of the rhoB gene by genotoxic stress is regulated via a CCAAT box and that interaction of CCAAT-binding factor and ATF-2 triggers the stress-inducible expression of rhoB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An emerging theme in transforming growth factor-β (TGF-β) signalling is the association of the Smad proteins with diverse groups of transcriptional regulatory proteins. Several Smad cofactors have been identified to date but the diversity of TGF-β effects on gene transcription suggests that interactions with other co-regulators must occur. In these studies we addressed the possible interaction of Smad proteins with the myocyte enhancer-binding factor 2 (MEF2) transcriptional regulators. Our studies indicate that Smad2 and 4 (Smad2/4) complexes cooperate with MEF2 regulatory proteins in a GAL4-based one-hybrid reporter gene assay. We have also observed in vivo interactions between Smad2 and MEF2A using co-immunoprecipitation assays. This interaction is confirmed by glutathione S-transferase pull-down analysis. Immunofluorescence studies in C2C12 myotubes show that Smad2 and MEF2A co-localise in the nucleus of multinuclear myotubes during differentiation. Interestingly, phospho-acceptor site mutations of MEF2 that render it unresponsive to p38 MAP kinase signalling abrogate the cooperativity with the Smads suggesting that p38 MAP Kinase-catalysed phosphorylation of MEF2 is a prerequisite for the Smad–MEF2 interaction. Thus, the association between Smad2 and MEF2A may subserve a physical link between TGF-β signalling and a diverse array of genes controlled by the MEF2 cis element.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sets of RNA ladders can be synthesized by transcription of a bacteriophage-encoded RNA polymerase using 3′-deoxynucleotides as chain terminators. These ladders can be used for sequencing of DNA. Using a nicked form of phage SP6 RNA polymerase in this study substantially enhanced yields of transcriptional sequencing ladders. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of chain-terminated RNA ladders allowed DNA sequence determination of up to 56 nt. It is also demonstrated that A→G and C→T variations in heterozygous and homozygous samples can be unambiguously identified by the mass spectrometric analysis. As a step towards single-tube sequencing reactions, α-thiotriphosphate nucleotide analogs were used to overcome problems caused by chain terminator-independent, premature termination and by the small mass difference between natural pyrimidine nucleotides.