969 resultados para Time domains
Resumo:
Background In order to provide insights into the complex biochemical processes inside a cell, modelling approaches must find a balance between achieving an adequate representation of the physical phenomena and keeping the associated computational cost within reasonable limits. This issue is particularly stressed when spatial inhomogeneities have a significant effect on system's behaviour. In such cases, a spatially-resolved stochastic method can better portray the biological reality, but the corresponding computer simulations can in turn be prohibitively expensive. Results We present a method that incorporates spatial information by means of tailored, probability distributed time-delays. These distributions can be directly obtained by single in silico or a suitable set of in vitro experiments and are subsequently fed into a delay stochastic simulation algorithm (DSSA), achieving a good compromise between computational costs and a much more accurate representation of spatial processes such as molecular diffusion and translocation between cell compartments. Additionally, we present a novel alternative approach based on delay differential equations (DDE) that can be used in scenarios of high molecular concentrations and low noise propagation. Conclusions Our proposed methodologies accurately capture and incorporate certain spatial processes into temporal stochastic and deterministic simulations, increasing their accuracy at low computational costs. This is of particular importance given that time spans of cellular processes are generally larger (possibly by several orders of magnitude) than those achievable by current spatially-resolved stochastic simulators. Hence, our methodology allows users to explore cellular scenarios under the effects of diffusion and stochasticity in time spans that were, until now, simply unfeasible. Our methodologies are supported by theoretical considerations on the different modelling regimes, i.e. spatial vs. delay-temporal, as indicated by the corresponding Master Equations and presented elsewhere.
Analytical Solution for the Time-Fractional Telegraph Equation by the Method of Separating Variables
Resumo:
Australia has witnessed a continual increase in maternal employment over the past two decades, which places focus on both supply of childcare and a demand for high quality care. This study examined childcare preferences regarding the return to paid work of 124 Australian women who were expecting their first child. In contrast with most studies that have retrospective designs, the design of this study presents the perspectives of women prior to the birth of their first child-that is, before they have made a final decision about child care. This study found that the majority (78 per cent) of the women intended to re-commence work within the 12 months after the birth of their child. There were two factors that were the most salient features in their decision making-the quality of care and the personal satisfaction of engaging in paid work. The findings suggest that family friendly employment practices and access to secure, high-quality child care are key to women's secure participation in the paid workforce.
Resumo:
The number of children with special health care needs surviving infancy and attending school has been increasing. Due to their health status, these children may be at risk of low social-emotional and learning competencies (e.g., Lightfoot, Mukherjee, & Sloper, 2000; Zehnder, Landolt, Prchal, & Vollrath, 2006). Early social problems have been linked to low levels of academic achievement (Ladd, 2005), inappropriate behaviours at school (Shiu, 2001) and strained teacher-child relationships (Blumberg, Carle, O‘Connor, Moore, & Lippmann, 2008). Early learning difficulties have been associated with mental health problems (Maughan, Rowe, Loeber, & Stouthamer-Loeber, 2003), increased behaviour issues (Arnold, 1997), delinquency (Loeber & Dishion, 1983) and later academic failure (Epstein, 2008). Considering the importance of these areas, the limited research on special health care needs in social-emotional and learning domains is a factor driving this research. The purpose of the current research is to investigate social-emotional and learning competence in the early years for Australian children who have special health care needs. The data which informed this thesis was from Growing up in Australia: The Longitudinal Study of Australian Children. This is a national, longitudinal study being conducted by the Commonwealth Department of Families, Housing, Community Services and Indigenous Affairs. The study has a national representative sample, with data collection occurring biennially, in 2004 (Wave 1), 2006 (Wave 2) and 2008 (Wave 3). Growing up in Australia uses a cross-sequential research design involving two cohorts, an Infant Cohort (0-1 at recruitment) and a Kindergarten Cohort (4-5 at recruitment). This study uses the Kindergarten Cohort, for which there were 4,983 children at recruitment. Three studies were conducted to address the objectives of this thesis. Study 1 used Wave 1 data to identify and describe Australian children with special health care needs. Children who identified as having special health care needs through the special health care needs screener were selected. From this, descriptive analyses were run. The results indicate that boys, children with low birth weight and children from families with low levels of maternal education are likely to be in the population of children with special health care needs. Further, these children are likely to be using prescription medications, have poor general health and are likely to have specific condition diagnoses. Study 2 used Wave 1 data to examine differences between children with special health care needs and their peers in social-emotional competence and learning competence prior to school. Children identified by the special health care needs screener were chosen for the case group (n = 650). A matched case control group of peers (n = 650), matched on sex, cultural and linguistic diversity, family socioeconomic position and age, were the comparison group. Social-emotional competence was measured through Social/Emotional Domain scores taken from the Growing up in Australia Outcome Index, with learning competence measured through Learning Domain scores. Results suggest statistically significant differences in scores between the two groups. Children with special health care needs have lower levels of social-emotional and learning competence prior to school compared to their peers. Study 3 used Wave 1 and Wave 2 data to examine the relationship between special health care needs at Wave 1 and social-emotional competence and learning competence at Wave 2, as children started school. The sample for this study consisted of children in the Kindergarten Cohort who had teacher data at Wave 2. Results from multiple regression models indicate that special health care needs prior to school (Wave 1) significantly predicts social-emotional competence and learning competence in the early years of school (Wave 2). These results indicate that having special health care needs prior to school is a risk factor for the social-emotional and learning domains in the early years of school. The results from these studies give valuable insight into Australian children with special health care needs and their social-emotional and learning competence in the early years. The Australia population of children with special health care needs were primarily male children, from families with low maternal education, were likely to be of poor health and taking prescription medications. It was found that children with special health care needs were likely to have lower social-emotional competence and learning competence prior to school compared to their peers. Results indicate that special health care needs prior to school were predictive of lower social-emotional and learning competencies in the early years of school. More research is required into this unique population and their competencies over time. However, the current research provides valuable insight into an under researched 'at risk' population.
Resumo:
Coral reefs are biologically complex ecosystems that support a wide variety of marine organisms. These are fragile communities under enormous threat from natural and human-based influences. Properly assessing and measuring the growth and health of reefs is essential to understanding impacts of ocean acidification, coastal urbanisation and global warming. In this paper, we present an innovative 3-D reconstruction technique based on visual imagery as a non-intrusive, repeatable, in situ method for estimating physical parameters, such as surface area and volume for efficient assessment of long-term variability. The reconstruction algorithms are presented, and benchmarked using an existing data set. We validate the technique underwater, utilising a commercial-off-the-shelf camera and a piece of staghorn coral, Acropora cervicornis. The resulting reconstruction is compared with a laser scan of the coral piece for assessment and validation. The comparison shows that 77% of the pixels in the reconstruction are within 0.3 mm of the ground truth laser scan. Reconstruction results from an unknown video camera are also presented as a segue to future applications of this research.
Resumo:
Signal Processing (SP) is a subject of central importance in engineering and the applied sciences. Signals are information-bearing functions, and SP deals with the analysis and processing of signals (by dedicated systems) to extract or modify information. Signal processing is necessary because signals normally contain information that is not readily usable or understandable, or which might be disturbed by unwanted sources such as noise. Although many signals are non-electrical, it is common to convert them into electrical signals for processing. Most natural signals (such as acoustic and biomedical signals) are continuous functions of time, with these signals being referred to as analog signals. Prior to the onset of digital computers, Analog Signal Processing (ASP) and analog systems were the only tool to deal with analog signals. Although ASP and analog systems are still widely used, Digital Signal Processing (DSP) and digital systems are attracting more attention, due in large part to the significant advantages of digital systems over the analog counterparts. These advantages include superiority in performance,s peed, reliability, efficiency of storage, size and cost. In addition, DSP can solve problems that cannot be solved using ASP, like the spectral analysis of multicomonent signals, adaptive filtering, and operations at very low frequencies. Following the recent developments in engineering which occurred in the 1980's and 1990's, DSP became one of the world's fastest growing industries. Since that time DSP has not only impacted on traditional areas of electrical engineering, but has had far reaching effects on other domains that deal with information such as economics, meteorology, seismology, bioengineering, oceanology, communications, astronomy, radar engineering, control engineering and various other applications. This book is based on the Lecture Notes of Associate Professor Zahir M. Hussain at RMIT University (Melbourne, 2001-2009), the research of Dr. Amin Z. Sadik (at QUT & RMIT, 2005-2008), and the Note of Professor Peter O'Shea at Queensland University of Technology. Part I of the book addresses the representation of analog and digital signals and systems in the time domain and in the frequency domain. The core topics covered are convolution, transforms (Fourier, Laplace, Z. Discrete-time Fourier, and Discrete Fourier), filters, and random signal analysis. There is also a treatment of some important applications of DSP, including signal detection in noise, radar range estimation, banking and financial applications, and audio effects production. Design and implementation of digital systems (such as integrators, differentiators, resonators and oscillators are also considered, along with the design of conventional digital filters. Part I is suitable for an elementary course in DSP. Part II (which is suitable for an advanced signal processing course), considers selected signal processing systems and techniques. Core topics covered are the Hilbert transformer, binary signal transmission, phase-locked loops, sigma-delta modulation, noise shaping, quantization, adaptive filters, and non-stationary signal analysis. Part III presents some selected advanced DSP topics. We hope that this book will contribute to the advancement of engineering education and that it will serve as a general reference book on digital signal processing.
Resumo:
This paper presents channel measurements and weather data collection experiments conducted in a rural environment for an innovative Multi-User-Single-Antenna (MUSA) MIMO-OFDM technology, proposed for rural areas. MUSA MIMO-OFDM uplink channels are established by placing six user terminals (UT) around one access point (AP). Generated terrain profiles and relative received power plots are presented based on the experimental data. According to the relative received signal, MUSA-MIMO-OFDM uplink channels experience temporal fading. Moreover, the correlation between the relative received power and weather variables are presented. Results show that all weather variables exhibit a negative average correlation with received power. Wind speed records the highest average negative correlation coefficient of -0.35. Local maxima of negative correlation, ranging from 0.49 to 0.78, between the weather variables and relative received signals were registered between 5-6 a.m. The highest measured correlation (-0.78) of this time of the day was exhibited by wind speed. These results show the extend of time variation effects experienced by MUSA-MIMO-OFDM channels deployed in rural environments.
Resumo:
This paper establishes practical stability results for an important range of approximate discrete-time filtering problems involving mismatch between the true system and the approximating filter model. Using local consistency assumption, the practical stability established is in the sense of an asymptotic bound on the amount of bias introduced by the model approximation. Significantly, these practical stability results do not require the approximating model to be of the same model type as the true system. Our analysis applies to a wide range of estimation problems and justifies the common practice of approximating intractable infinite dimensional nonlinear filters by simpler computationally tractable filters.