818 resultados para Timber.
Resumo:
Recent reports have indicated that 23.5 percent of the nation's highway bridges are structurally deficient and 17.7 percent are functionally obsolete. A significant number of these bridges are on the Iowa county road system. The objective of the investigation described in this report was to identify, review and evaluate replacement bridges currently being used by various counties in Iowa and surrounding states. Iowa county engineers, county engineers in neighboring states as well as private manufacturers of bridge components, and regional precad prestressed concrete manufacturers were contacted to determine the most common replacement bridge types being used. Depending upon the findings of the review, possible improvements and/or new replacement bridge systems were to be proposed. A questionnaire was developed and sent to county engineers in Iowa and several counties in surrounding states. The results of the questionnaire showed that the most common replacement bridges in Iowa are the continuous concrete slab and prestressed concrete bridges. The primary reason these types are used is because of the availability of standard designs and because of their ease of maintenance. Counties seldom construct these types of bridges using their own labor forces, but instead contract the work. However, county forces are used to construct steel stringer, precast reinforced concrete and timber bridges. In general, 69 percent of the counties indicate an ability and willingness to use their own forces to design and construct relatively short span bridges (i.e., 40 A or less) provided the construction procedures are relatively simple. Several unique replacement bridge types used in Iowa that are constructed by county forces are documented and presented in this report. Sufficient details are provided to allow county engineers to determine if some of these bridges could be used to resolve some of their own replacement bridge problems. Where possible, cost information has also been provided. Each of these bridge types were evaluated for various criteria (e.g., cost effectiveness, conformance to AASI-ITO standards, range of sizes, etc.) by a panel of four Iowa county engineers; a summary of this critique is included. After evaluating the questionnaire responses from the counties and evaluating the various bridge replacement concepts currently in use, one new bridge replacement concept and one modification of a current Iowa county bridge replacement concept were developed. Both of these concepts would utilize county labor forces.
Resumo:
Araucaria angustifolia, commonly named Araucaria, is a Brazilian native species that is intensively exploited due to its timber quality. Therefore, Araucaria is on the list of species threatened by extinction. Despite the importance of soil for forest production, little is known about the soil properties of the highly fragmented Araucaria forests. This study was designed to investigate the use of chemical and biological properties as indicators of conservation and anthropogenic disturbance of Araucaria forests in different sampling periods. The research was carried out in two State parks of São Paulo: Parque Estadual Turístico do Alto do Ribeira and Parque Estadual de Campos de Jordão. The biochemical properties carbon and nitrogen in microbial biomass (MB-C and MB-N), basal respiration (BR), the metabolic quotient (qCO2) and the following enzyme activities: β-glucosidase, urease, and fluorescein diacetate hydrolysis (FDA) were evaluated. The sampling period (dry or rainy season) influenced the results of mainly MB-C, MB-N, BR, and qCO2. The chemical and biochemical properties, except K content, were sensitive indicators of differences in the conservation and anthropogenic disturbance stages of Araucaria forests. Although these forests differ in biochemical and chemical properties, they are efficient in energy use and conservation, which is shown by their low qCO2, suggesting an advanced stage of succession.
Resumo:
The strategic plan for bridge engineering issued by AASHTO in 2005 identified extending the service life and optimizing structural systems of bridges in the United States as two grand challenges in bridge engineering, with the objective of producing safer bridges that have a minimum service life of 75 years and reduced maintenance cost. Material deterioration was identified as one of the primary challenges to achieving the objective of extended life. In substructural applications (e.g., deep foundations), construction materials such as timber, steel, and concrete are subjected to deterioration due to environmental impacts. Using innovative and new materials for foundation applications makes the AASHTO objective of 75 years service life achievable. Ultra High Performance Concrete (UHPC) with compressive strength of 180 MPa (26,000 psi) and excellent durability has been used in superstructure applications but not in geotechnical and foundation applications. This study explores the use of precast, prestressed UHPC piles in future foundations of bridges and other structures. An H-shaped UHPC section, which is 10-in. (250-mm) deep with weight similar to that of an HP10×57 steel pile, was designed to improve constructability and reduce cost. In this project, instrumented UHPC piles were cast and laboratory and field tests were conducted. Laboratory tests were used to verify the moment-curvature response of UHPC pile section. In the field, two UHPC piles have been successfully driven in glacial till clay soil and load tested under vertical and lateral loads. This report provides a complete set of results for the field investigation conducted on UHPC H-shaped piles. Test results, durability, drivability, and other material advantages over normal concrete and steel indicate that UHPC piles are a viable alternative to achieve the goals of AASHTO strategic plan.
Resumo:
For well over 100 years, the Working Stress Design (WSD) approach has been the traditional basis for geotechnical design with regard to settlements or failure conditions. However, considerable effort has been put forth over the past couple of decades in relation to the adoption of the Load and Resistance Factor Design (LRFD) approach into geotechnical design. With the goal of producing engineered designs with consistent levels of reliability, the Federal Highway Administration (FHWA) issued a policy memorandum on June 28, 2000, requiring all new bridges initiated after October 1, 2007, to be designed according to the LRFD approach. Likewise, regionally calibrated LRFD resistance factors were permitted by the American Association of State Highway and Transportation Officials (AASHTO) to improve the economy of bridge foundation elements. Thus, projects TR-573, TR-583 and TR-584 were undertaken by a research team at Iowa State University’s Bridge Engineering Center with the goal of developing resistance factors for pile design using available pile static load test data. To accomplish this goal, the available data were first analyzed for reliability and then placed in a newly designed relational database management system termed PIle LOad Tests (PILOT), to which this first volume of the final report for project TR-573 is dedicated. PILOT is an amalgamated, electronic source of information consisting of both static and dynamic data for pile load tests conducted in the State of Iowa. The database, which includes historical data on pile load tests dating back to 1966, is intended for use in the establishment of LRFD resistance factors for design and construction control of driven pile foundations in Iowa. Although a considerable amount of geotechnical and pile load test data is available in literature as well as in various State Department of Transportation files, PILOT is one of the first regional databases to be exclusively used in the development of LRFD resistance factors for the design and construction control of driven pile foundations. Currently providing an electronically organized assimilation of geotechnical and pile load test data for 274 piles of various types (e.g., steel H-shaped, timber, pipe, Monotube, and concrete), PILOT (http://srg.cce.iastate.edu/lrfd/) is on par with such familiar national databases used in the calibration of LRFD resistance factors for pile foundations as the FHWA’s Deep Foundation Load Test Database. By narrowing geographical boundaries while maintaining a high number of pile load tests, PILOT exemplifies a model for effective regional LRFD calibration procedures.
Resumo:
This report contains an evaluation and design manual for strengthening and replacing low volume steel stringer and timber stringer bridges. An advisory panel consisting of county and municipal engineers provided direction for the development of the manual. NBI bridge data, along with results from questionnaires sent to county and municipal engineers were used to formulate the manual. Types of structures shown to have the greatest need for cost-effective strengthening methods are steel stringer and timber stringer bridges. Procedures for strengthening these two types of structures have been developed. Various types of replacement bridges have also been included so that the most cost effective solution for a deficient bridge may be obtained. The key results of this study is an extensive compilation, which can be used by county engineers, of the most effective techniques for strengthening deficient existing bridges. The replacement bridge types included have been used in numerous low volume applications in surrounding states, as well as in Iowa. An economic analysis for determining the cost-effectiveness of the various strengthening methods and replacement bridges is also an important part of the manual. Microcomputer spreadsheet software for several of the strengthening methods, types of replacement bridges and for the economic analysis has been developed, documented and presented in the manual. So the manual, Chp. 3 of the final report, can be easily located, blue divider pages have been inserted to delineate the manual from the rest of the report.
Resumo:
PEOPLE OWN WOODED ACREAGES and woodlands for a variety of reasons that may include: timber production, firewood production, recreation, wildlife habitat, aesthetics, and alternative forest products. Most of Iowa’s forestland is privately held, and the majority of ownership is fragmented into an average of ten acres (Forest Reserve Survey, 2004). In fact, the average size of an individual forest or woodlot ownership has been steadily declining for several years due in part to population growth, urban sprawl, and changes in land ownership. Studies indicate that the probability of a sustainable woodlot decreases as the population increases. At the same time, most woodlot owners want to be good stewards and protect and enhance the forest that they own. To achieve this goal, careful forest planning and management is required especially when managing the land for multiple objectives.
Resumo:
Iowa’s three million acres of forest land provide environmental benefits to all Iowans in terms of soil erosion control, air quality, and water quality. In 2013, more than 6.5 million trees died. Within those trees there were more than 125 million board feet of wood, compared to 98 million board feet of wood harvested. This level of mortality is the highest level reported from US Forest Service inventories in twenty years. This is disturbing when considering more than 18,000 Iowans are employed in the wood products and manufacturing industry, generating nearly $4 billion in annual sales, more than $900 million in annual payroll and more than $25 million to private woodland owners annually from the sale of timber.
Resumo:
More and more, integral abutment bridges are being used in place of the more traditional bridge designs with expansion releases. In this study, states which use integral abutment bridges were surveyed to determine their current practice in the design of these structures. To study piles in integral abutment bridges, a finite element program for the soil-pile system was developed (1) with materially and geometrically nonlinear, two and three dimensional beam elements and (2) with a nonlinear, Winkler soil model with vertical, horizontal, and pile tip springs. The model was verified by comparison to several analytical and experimental examples. A simplified design model for analyzing piles in integral abutment bridges is also presented. This model grew from previous analytical models and observations of pile behavior. The design model correctly describes the essential behavioral characteristics of the pile and conservatively predicts the vertical load-carrying capacity. Analytical examples are presented to illustrate the effects of lateral displacements on the ultimate load capacity of a pile. These examples include friction and end-bearing piles; steel, concrete, and timber piles; and bending about the weak, strong, and 45° axes for H piles. The effects of cyclic loading are shown for skewed and nonskewed bridges. The results show that the capacity of friction piles is not significantly affected by lateral displacements, but the capacity of end-bearing piles is reduced. Further results show that the longitudinal expansion of the bridge can introduce a vertical preload on the pile.
Resumo:
During the harvest season in Iowa, it is common to have single axle loads on secondary roads and bridges that are excessive (typical examples are grain carts) and well beyond normal load limits. Even though these excessive loads occur only during a short time of the year, they may do significant damage to pavements and bridges. In addition, the safety of some bridges may be compromised because of the excessive loads, and sometimes there may be little indication to the users that damage may be imminent. At this time there are no Iowa laws regulating axle loads allowed for agricultural equipment. This study looks at the potential problems this may cause on secondary roads and timber stringer bridges. Both highway pavement and timber bridges are evaluated in this report. A section (panel) of Iowa PCC paved county road was chosen to study the effects of heavy agricultural loads on pavements. Instrumentation was applied to the panel and a heavily loaded grain cart was rolled across. The collected data were analyzed for any indication of excessive stresses of the concrete. The second study, concerning excessive loads on timber stringer bridges, was conducted in the laboratory. Four bridge sections were constructed and tested. Two of the sections contained five stringers and two sections had three stringers. Timber for the bridges came from a dismantled bridge, and deck panels were cut from new stock. All timber was treated with creosote. A hydraulic load was applied at the deck mid-span using a foot print representing a tire from a typical grain cart. Force was applied until failure of the system resulted. The collected data were evaluated to provide indications of load distribution and for comparison with expected wheel loads for a typical heavily loaded single axle grain cart. Results of the pavement tests showed that the potential of over-stressing the pavement is a possibility. Even though most of the tension stress levels recorded were below the rupture strength of the concrete, there were a few instances where the indicated tension stress level exceeded the concrete rupture strength. Results of the bridge tests showed that when the static ultimate load capacity of the timber stringer bridge sections was reached, there was sudden loss of capacity. Prior to reaching this ultimate capacity, the load sharing between the stringers was very uniform. The failure was characterized by loss of flexural capacity of the stringers. In all tests, the ultimate test load exceeded the wheel load that would be applied by an 875 bushel single axle grain cart.
Resumo:
The use of Railroad Flatcars (RRFCs) as the superstructure on low-volume county bridges has been investigated in a research project conducted by the Bridge Engineering Center at Iowa State University. These bridges enable county engineers to replace old, inadequate county bridge superstructures for less than half the cost and in a shorter construction time than required for a conventional bridge. To illustrate their constructability, adequacy, and economy, two RRFC demonstration bridges were designed, constructed, and tested: one in Buchanan County and the other in Winnebago County. The Buchanan County Bridge was constructed as a single span with 56-ft-long flatcars supported at their ends by new, concrete abutments. The use of concrete in the substructure allowed for an integral abutment at one end of the bridge with an expansion joint at the other end. Reinforced concrete beams (serving as longitudinal connections between the three adjacent flatcars) were installed to distribute live loads among the RRFCs. Guardrails and an asphalt milling driving surface completed the bridge. The Winnebago County Bridge was constructed using 89-ft-long flatcars. Preliminary calculations determined that they were not adequate to span 89 ft as a simple span. Therefore, the flatcars were supported by new, steel-capped piers and abutments at the RRFCs' bolsters and ends, resulting in a 66-ft main span and two 10-ft end spans. Due to the RRFC geometry, the longitudinal connections between adjacent RRFCs were inadequate to support significant loads; therefore, transverse, recycled timber planks were utilized to effectively distribute live loads to all three RRFCs. A gravel driving surface was placed on top of the timber planks, and a guardrail system was installed to complete the bridge. Bridge behavior predicted by grillage models for each bridge was validated by strain and deflection data from field tests; it was found that the engineered RRFC bridges have live load stresses significantly below the AASHTO Bridge Design Specification limits. To assist in future RRFC bridge projects, RRFC selection criteria were established for visual inspection and selection of structurally adequate RRFCs. In addition, design recommendations have been developed to simplify live load distribution calculations for the design of the bridges. Based on the results of this research, it has been determined that through proper RRFC selection, construction, and engineering, RRFC bridges are a viable, economic replacement system for low-volume road bridges.
Resumo:
Recent reports indicate that of the over 25,000 bridges in Iowa, slightly over 7,000 (29%) are either structurally deficient or functionally obsolete. While many of these bridges may be strengthened or rehabilitated, some simply need to be replaced. Before implementing one of these options, one should consider performing a diagnostic load test on the structure to more accurately assess its load carrying capacity. Frequently, diagnostic load tests reveal strength and serviceability characteristics that exceed the predicted codified parameters. Usually, codified parameters are very conservative in predicting lateral load distribution characteristics and the influence of other structural attributes. As a result, the predicted rating factors are typically conservative. In cases where theoretical calculations show a structural deficiency, it may be very beneficial to apply a "tool" that utilizes a more accurate theoretical model which incorporates field-test data. At a minimum, this approach results in more accurate load ratings and many times results in increased rating factors. Bridge Diagnostics, Inc. (BDI) developed hardware and software that are specially designed for performing bridge ratings based on data obtained from physical testing. To evaluate the BDI system, the research team performed diagnostic load tests on seven "typical" bridge structures: three steel-girder bridges with concrete decks, two concrete slab bridges, and two steel-girder bridges with timber decks. In addition, a steel-girder bridge with a concrete deck previously tested and modeled by BDI was investigated for model verification purposes. The tests were performed by attaching strain transducers on the bridges at critical locations to measure strains resulting from truck loading positioned at various locations on the bridge. The field test results were used to develop and validate analytical rating models. Based on the experimental and analytical results, it was determined that bridge tests could be conducted relatively easy, that accurate models could be generated with the BDI software, and that the load ratings, in general, were greater than the ratings, obtained using the codified LFD Method (according to AASHTO Standard Specifications for Highway Bridges).
Resumo:
There are hundreds of structurally deficient or functionally obsolete bridges in the state of Iowa. With the majority of these bridges located on rural county roads where there is limited funding available to replace the bridges, diagnostic load testing can be utilized to determine the actual load carrying capacity of the bridge. One particular family or fleet of bridges that has been determined to be desirable for load testing consists of single-span bridges with non-composite, cast-in-place concrete decks, steel stringers, and timber substructures. Six bridges with poor performing superstructure and substructure from the aforementioned family of bridges were selected to be load tested. The six bridges were located on rural roads in five different counties in Iowa: Boone, Carroll, Humboldt, Mahaska, and Marshall. Volume I of this report focuses on evaluating the superstructure for this family of bridges. This volume discusses the behavior characteristics that influence the load carrying capacity of this fleet of bridges. In particular, the live load distribution, partial composite action, and bearing restraint were investigated as potential factors that could influence the bridge ratings. Implementing fleet management practices, the bridges were analyzed to determine if the load test results could be predicted to better analyze previously untested bridges. For this family of bridges it was found that the ratings increased as a result of the load testing demonstrating a greater capacity than determined analytically. Volume II of this report focuses on evaluating the timber substructure for this family of bridges. In this volume, procedures for detecting pile internal decay using nondestructive ultrasonic stress wave techniques, correlating nondestructive ultrasonic stress wave techniques to axial compression tests to estimate deteriorated pile residual strength, and evaluating load distribution through poor performing timber substructure elements by instrumenting and load testing the abutments of the six selected bridges are discussed. Also, in this volume pile repair methods for restoring axial and bending capacities of pile are developed and evaluated.
Resumo:
Problems with unknown bridge foundations in Iowa are often associated with timber substructures. Timber piles are subject to biological and physical deterioration, which makes quantifying in-service pile capacity difficult. Currently there are no reliable means to estimate the residual carrying capacity of an in-service deteriorated pile; and thus, the overall safety of the bridge cannot be determined. The lack of reliable evaluation methods can lead to conservative and costly maintenance practices. This research study was undertaken to investigate procedures for assessing bridge substructures, and evaluating procedures for rehabilitating/strengthening/replacing inadequate substructure components. The report includes an extensive literature review, a field reconnaissance study of 49 bridges, a survey of substructure problems from the perspective of County Engineers, a laboratory study aiming to correlate nondestructive tests to residual pile strength and stiffness values, nondestructive and destructive load tests for 6 bridges with poor substructures, and finally a laboratory study evaluating selected repair methods.
Resumo:
The strategic plan for bridge engineering issued by AASHTO in 2005 identified extending the service life and optimizing structural systems of bridges in the United States as two grand challenges in bridge engineering, with the objective of producing safer bridges that have a minimum service life of 75 years and reduced maintenance cost. Material deterioration was identified as one of the primary challenges to achieving the objective of extended life. In substructural applications (e.g., deep foundations), construction materials such as timber, steel, and concrete are subjected to deterioration due to environmental impacts. Using innovative and new materials for foundation applications makes the AASHTO objective of 75 years service life achievable. Ultra High Performance Concrete (UHPC) with compressive strength of 180 MPa (26,000 psi) and excellent durability has been used in superstructure applications but not in geotechnical and foundation applications. This study explores the use of precast, prestressed UHPC piles in future foundations of bridges and other structures. An H-shaped UHPC section, which is 10-in. (250-mm) deep with weight similar to that of an HP10×57 steel pile, was designed to improve constructability and reduce cost. In this project, instrumented UHPC piles were cast and laboratory and field tests were conducted. Laboratory tests were used to verify the moment-curvature response of UHPC pile section. In the field, two UHPC piles have been successfully driven in glacial till clay soil and load tested under vertical and lateral loads. This report provides a complete set of results for the field investigation conducted on UHPC H-shaped piles. Test results, durability, drivability, and other material advantages over normal concrete and steel indicate that UHPC piles are a viable alternative to achieve the goals of AASHTO strategic plan.
Resumo:
For well over 100 years, the Working Stress Design (WSD) approach has been the traditional basis for geotechnical design with regard to settlements or failure conditions. However, considerable effort has been put forth over the past couple of decades in relation to the adoption of the Load and Resistance Factor Design (LRFD) approach into geotechnical design. With the goal of producing engineered designs with consistent levels of reliability, the Federal Highway Administration (FHWA) issued a policy memorandum on June 28, 2000, requiring all new bridges initiated after October 1, 2007, to be designed according to the LRFD approach. Likewise, regionally calibrated LRFD resistance factors were permitted by the American Association of State Highway and Transportation Officials (AASHTO) to improve the economy of bridge foundation elements. Thus, projects TR-573, TR-583 and TR-584 were undertaken by a research team at Iowa State University’s Bridge Engineering Center with the goal of developing resistance factors for pile design using available pile static load test data. To accomplish this goal, the available data were first analyzed for reliability and then placed in a newly designed relational database management system termed PIle LOad Tests (PILOT), to which this first volume of the final report for project TR-573 is dedicated. PILOT is an amalgamated, electronic source of information consisting of both static and dynamic data for pile load tests conducted in the State of Iowa. The database, which includes historical data on pile load tests dating back to 1966, is intended for use in the establishment of LRFD resistance factors for design and construction control of driven pile foundations in Iowa. Although a considerable amount of geotechnical and pile load test data is available in literature as well as in various State Department of Transportation files, PILOT is one of the first regional databases to be exclusively used in the development of LRFD resistance factors for the design and construction control of driven pile foundations. Currently providing an electronically organized assimilation of geotechnical and pile load test data for 274 piles of various types (e.g., steel H-shaped, timber, pipe, Monotube, and concrete), PILOT (http://srg.cce.iastate.edu/lrfd/) is on par with such familiar national databases used in the calibration of LRFD resistance factors for pile foundations as the FHWA’s Deep Foundation Load Test Database. By narrowing geographical boundaries while maintaining a high number of pile load tests, PILOT exemplifies a model for effective regional LRFD calibration procedures.