805 resultados para Thick lens
Resumo:
The design is described of a double layer frequency selective surface which can produce a differential phase shift of 180 ° as the wave propagates through it at normal incidence. The hand of an applied circularly polarized signal is reversed due to the 180° phase shift, and it is demonstrated that the exit circularly polarized output signal can be phase advanced or phase retarded by 180 ° upon rotation of the elements comprising the structure. This feature allows the surface to act as a spatial phase shifter. In this paper the beam steering capabilities of a 10 × 10 array of such elements are demonstrated. Here the individual elements comprising the array are rotated relative to each other in order to generate a progressive phase shift. At normal incidence the 3 dB Axial Ratio Bandwidth for LHCP to RHCP conversion is 5.3% and the insertion loss was found to be -2.3 dB, with minimum axial ratio of 0.05 dB. This array is shown to be able to steer a beam from -40 ° to +40 ° while holding axial ratio at the pointing angle to below 4 dB. The measured radiation patterns match the theoretical calculation and full-wave simulation results. © 2010 IEEE.
Resumo:
A systematic computational fluid dynamics (CFD) approach has been applied to design the geometry of the channels of a three-dimensional (thick-walled) screen comprising upstream and downstream sets of elongated channels positioned at an angle of 90 degrees with respect to each other. Such a geometry of the thick-wall screen can effectively drop the ratio of the maximum flow velocity to mean flow velocity below 1.005 in a downstream microstructured reactor at low Reynolds numbers. In this approach the problem of flow equalization reduces to that of flow equalization in the first and second downstream channels of the thick-walled screen. In turn, this requires flow equalization in the corresponding cross-sections of the upstream channels. The validity of the proposed design method was assessed through a case study. The effect of different design parameters on the flow non-uniformity in the downstream channels has been established. The design equation is proposed to calculate the optimum values of the screen parameters. The CFD results on flow distribution were experimentally validated by Laser Doppler Anemometry measurements in the range of Reynolds numbers from 6 to 113. The measured flow non-uniformity in the separate reactor channels was below 2%.
Resumo:
A brief overview of work carried out by this group on thick (> 1 mu m), optically clear, robust titania films prepared by a sol-gel method, as well as new results regarding these films, are described. Such films are very active as photocatalysts and able to destroy stearic acid with a quantum yield of 0.32%. The activity of such films is largely unaffected by annealing temperatures below 760 degrees C, but is drastically reduced above this temperature. The drop in photocatalyst activity of such films as a function of annealing temperature appears to correlate well with the change in porosity of the films and suggests that the latter parameter is very important in deciding the overall activity of such films. The importance of porosity in semiconductor photocatalysed cold combustion may be due to the effect it has on access of oxygen to the active sites, rather like the effect the position of a fire grate (open or closed) has on the rate of burning, i.e., hot combustion, that takes place in a fireplace.
Resumo:
Thick paste TiO2 films are prepared and tested for photocatalytic and photoinduced superhydrophilic (PSH) activity. The films are effective photocatalysts for the destruction of stearic acid using near or far UV and all the sol-gel films tested exhibited a quantum yield for this process of typically 0.15 %. These quantum yields are significantly greater (4-8-fold) than those for titania films produced by an APCVD technique, including the commercial self-cleaning glass product Activ(TM). The films are mechanically robust and optically clear and, as photocatalysts for stearic acid removal, are photochemically stable and reproducible. The kinetics of stearic acid photomineralisation are zero order with an activation energy of ca. 2.5 Kj mol(-1). All titania films tested, including those produced by APCVD, exhibit PSH. The light-induced fall, and dark recovery, in the water droplet contact angle made with titania paste films are similar in profile shape to those described by others for thin titania films produced by a traditional sol-gel route. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The preparation and characterization of thick (9 mum), clear, mechanically robust and photocatalytically active films of nanocrystalline anatase titania are described. XRD and SEM analysis show the films comprise 13 nm particles of anatase TiO2. Thin (54 nm) films of the 'paste' TiO2, along with sol-gel titania films made by a more traditional route are also prepared and characterised. All titania films mediate the photocatalytic destruction of stearic acid with a quantum yield of 0.0016 +/- 0.0003. using either 365 nm (i.e. BLB) or 254 nm (germicidal) light. P25 TiO2 films also appear to mediate the same process with a similar formal quantum efficiency. Of all the films tested, the thick paste TiO2 films are the most ideally suited for use with near UV light, for reasons which are discussed. All the titania films tested exhibit photoinduced superhydrophilicity.
Resumo:
The mechanism by which a retrodirective Rotman lens operates is examined theoretically and prediction is compared with measurement. By deriving the reflection matrix based on the phase delay relationship between the beam ports and the array ports we show that if the phase delay difference between neighbouring ports is constrained in a particular way that the reflection matrix becomes an inverse diagonal matrix and the Rotman lens functions as a Van Atta Array hence can perform retrodirective reflection. Further, the primary factors governing the bandwidth and beam pointing error of the lens are elaborated.
Resumo:
A new type of broadband retrodirective array, which has been constructed using a microstrip Rotman lens, is presented. Automatic tracking of targets is obtained by exploiting the conjugate phase response of the beamforming network which is exhibited when the input ports are terminated with either open or short circuits. In addition, the true time-delay property of the Rotman lens gives broadband operation of the self-tracking array when used in conjunction with Vivaldi antennas. The simulated and measured bistatic and monostatic radar cross-section (RCS) patterns of a structure consisting of 13 beamports and 12 array ports are presented at frequencies in the range 8-12 GHz. Significantly enhanced RCS within the scan coverage ±40° is demonstrated by comparing the retrodirective behavior of a 12-element Vivaldi array terminated with and without the Rotman lens. © 2006 IEEE.
Resumo:
The authors describe how a standard Rotman lens design can be readily adapted in order to allow reconfigurable beam
forming. This is achieved by applying concurrent excitations to the modified Rotman lens. A rationale for the design and
underlying behaviour of the modified, phase-aligned, Rotman lens as well as the deficiencies of a conventional Rotman lens
in this mode of operation are provided. Simulated and measured results are provided in order to illustrate the feasibility of the
approach suggested.
Resumo:
To separately investigate the impact of simulated age-related lens yellowing, transparency loss and refractive error on measurements of macular pigment (MP) using resonance Raman spectroscopy.
Resumo:
Cataract surgery is one of the most commonly-practiced surgical procedures in Western medicine, and, while complications are rare, the most serious is infectious postoperative endophthalmitis. Bacteria may adhere to the implanted intraocular lens (IOL) and subsequent biofilm formation can lead to a chronic, difficult to treat infection. To date, no method to reduce the incidence of infectious endophthalmitis through bacterial elimination, while retaining optical transparency, has been reported. In this study we report a method to optimise the localisation of a cationic porphyrin at the surface of suitable acrylate copolymers, which is the first point of contact with potential pathogens. The porphyrin catalytically generates short-lived singlet oxygen, in the presence of visible light, which kills adherent bacteria indiscriminately. By restricting the photosensitiser to the surface of the biomaterial, reduction in optical transparency is minimised without affecting efficacy of singlet oxygen production. Hydrogel IOL biomaterials incorporating either methacrylic acid (MAA) or methyl methacrylate (MMA) co-monomers allow tuning of the hydrophobic and anionic properties to optimise the localisation of porphyrin. Physiochemical and antimicrobial properties of the materials have been characterised, giving candidate materials with self-generating, persistent anti-infective character against Gram-positive and Gram-negative organisms. Importantly, incorporation of porphyrin can also serve to protect the retina by filtering damaging shortwave visible light, due to the Soret absorption (?max) 430 nm). © 2012 Elsevier Ltd. All rights reserved.