965 resultados para Thermohidraulic circuit


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Session ratings of perceived exertion (SRPE) have been considered to provide a quantitative evaluation of the entire exercise session in different types of resistance training. In this study we investigated the ability of SRPE to assess exercise strain in a circuit weight training (CWT) workout and the influence of time lag to report SRPE. Ten healthy male volunteers (22.3±2.8 years, 72.5±6.5kg, and 175±5cm) completed a CWT session involving three circuits of five multiple joint exercises with single sets of 20 repetitions at 30% one repetition maximum (1-RM). Heart rate [63.7-75.0% maximum heart rate (%HRmax)], blood lactate (5.6-7.6mM) as well as overall, chest, and active muscle RPE increased significantly (p<0.05) throughout the CWT, but no significant differences were found between ratings of perceived exertion (RPE) types. Overall, chest and active muscle SRPE were accessed 10 minutes, 20 minutes, and 30 minutes after the workout, with no significant main effects or SRPE type×time interaction being found (p>0.05). Finally, no significant differences (p>0.05) were observed between averaged SRPE and RPE responses (overall: 3.7±0.6 vs. 3.5±0.9; chest: 3.8±0.7 vs. 3.6±0.8; active muscle; 3.7±0.7 vs. 3.5±0.7). These results suggest SRPE, irrespective of the moment at which it is taken, to be a useful tool for assessing global exercise strain in a CWT workout, providing coaches, physicians, and exercisers a practical way for monitoring this type of resistance training. © 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cochlear root neurons (CRNs) are the first brainstem neurons which initiate and participate in the full expression of the acoustic startle reflex. Although it has been suggested that a cholinergic pathway from the ventral nucleus of the trapezoid body (VNTB) conveys auditory prepulses to the CRNs, the neuronal origin of the VNTB-CRNs projection and the role it may play in the cochlear root nucleus remain uncertain. To determine the VNTB neuronal type which projects to CRNs, we performed tract-tracing experiments combined with mechanical lesions, and morphometric analyses. Our results indicate that a subpopulation of non-olivocochlear neurons projects directly and bilaterally to CRNs via the trapezoid body. We also performed a gene expression analysis of muscarinic and nicotinic receptors which indicates that CRNs contain a cholinergic receptor profile sufficient to mediate the modulation of CRN responses. Consequently, we investigated the effects of auditory prepulses on the neuronal activity of CRNs using extracellular recordings in vivo. Our results show that CRN responses are strongly inhibited by auditory prepulses. Unlike other neurons of the cochlear nucleus, the CRNs exhibited inhibition that depended on parameters of the auditory prepulse such as intensity and interstimulus interval, showing their strongest inhibition at short interstimulus intervals. In sum, our study supports the idea that CRNs are involved in the auditory prepulse inhibition of the acoustic startle reflex, and confirms the existence of multiple cholinergic pathways that modulate the primary acoustic startle circuit. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the dynamical interactions of a double pendulum arm and an electromechanical shaker is investigated. The double pendulum is a three degree of freedom system coupled to an RLC circuit based nonlinear shaker through a magnetic field, and the capacitor voltage is a nonlinear function of the instantaneous electric charge. Numerical simulations show the existence of chaotic behavior for some regions in the parameter space and this behaviour is characterized by power spectral density and Lyapunov exponents. The bifurcation diagram is constructed to explore the qualitative behaviour of the system. This kind of electromechanical system is frequently found in robotic systems, and in order to suppress the chaotic motion, the State-Dependent Riccati Equation (SDRE) control and the Nonlinear Saturation control (NSC) techniques are analyzed. The robustness of these two controllers is tested by a sensitivity analysis to parametric uncertainties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low-cost circuit was developed for stable and efficient maximum power point (MPP) tracking in autonomous photo voltaic-motor systems with variable-frequency drives (VFDs). The circuit is made of two resistors, two capacitors, and two Zener diodes. Its input is the photovoltaic (PV) array voltage and its output feeds the proportional-integral-derivative (PID) controller usually integrated into, the drive. The steady-state frequency-voltage oscillations induced by the circuit were treated in a simplified mathematical model, which was validated by widely characterizing a PV-powered centrifugal pump. General procedures for circuit and controller tuning were recommended based on model equations. The tracking circuit presented here is widely applicable to PV-motor system with VFDs, offering an. efficient open-access technology of unique simplicity. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: The aim of this study was to investigate the impact of circuit-based exercise on the body composition in obese older women by focusing on physical exercise and body weight (BW) gain control in older people. Methods: Seventy older women (>60 years old) voluntarily took part in the study. Participants were randomized into six different groups according to body mass index (BMI): appropriate weight (AW) control (AWC) and trained (AWT) groups, overweight (OW) control (OWC) and trained (OWT) groups, and obesity (O) control (OC) and trained (OT) groups. The exercise program consisted of 50 minutes of exercise three times per week for 12 weeks. The exercises were alternated between upper and lower body using rest between sets for 40 seconds with intensity controlled by heart rate (70% of work). The contraction time established was 5 seconds to eccentric and concentric muscular action phase. The following anthropometric parameters were evaluated: height (m), body weight (BW, kg), body fat (BF, %), fat mass (FM, kg), lean mass (LM, kg), and BMI (kg/m(2)). Results: The values (mean +/- standard deviation [SD]) of relative changes to BW (-8.0% +/- 0.8%), BF (-21.4% +/- 2.1%), LM (3.0% +/- 0.3%), and FM (-31.2% +/- 3.0%) to the OT group were higher (P < .05) than in the AWT (BW: -2.0% +/- 1.1%; BF: -4.6% +/- 1.8%; FM: -7.0% +/- 2.8%; LM: 0.2% +/- 1.1%) and OWT (BW: -4.5% +/- 1.0%; BF: -11.0% +/- 2.2%; FM: -16.1% +/- 3.2%; LM: -0.2% +/- 1.0%) groups; additionally, no differences were found for C groups. While reduction (P < .03) in BMI according to absolute values was observed for all trained groups (AWT: 22 +/- 1 versus 21 +/- 1; OWT: 27 +/- 1 versus 25 +/- 1, OT: 34 +/- 1 versus 30 +/- 1) after training, no differences were found for C groups. Conclusion: In summary, circuit-based exercise is an effective method for promoting reduction in anthropometrics parameters in obese older women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An interesting method to investigate the effect of fuel crossover in low temperature fuel cells consists of studying the open circuit interaction between the reducing fuel and an oxide-covered catalyst. Herein we report the experimental study of the open circuit interaction between borohydride and oxidized platinum surfaces in alkaline media. When compared to the case of hydrogen and other small organic molecules, two remarkable new features were observed. Firstly, the interaction with borohydride resulted in a very-fast reduction process with transient times about two to three orders of magnitude smaller. The second peculiarity was that the decrease of the open circuit potential was found to occur in two-stages and this, previously unseen, feature was correlated with the two-hump profile found in the backward sweep in the cyclic voltammogram The consequences of our findings are discussed in connection with fundamental and applied aspects. (C) 2011 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study analyzes an accident in which two maintenance workers suffered severe burns while replacing a circuit breaker panel in a steel mill, following model of analysis and prevention of accidents (MAPA) developed with the objective of enlarging the perimeter of interventions and contributing to deconstruction of blame attribution practices. The study was based on materials produced by a health service team in an in-depth analysis of the accident. The analysis shows that decisions related to system modernization were taken without considering their implications in maintenance scheduling and creating conflicts of priorities and of interests between production and safety; and also reveals that the lack of a systemic perspective in safety management was its principal failure. To explain the accident as merely non-fulfillment of idealized formal safety rules feeds practices of blame attribution supported by alibi norms and inhibits possible prevention. In contrast, accident analyses undertaken in worker health surveillance services show potential to reveal origins of these events incubated in the history of the system ignored in practices guided by the traditional paradigm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a technique for performing analog design synthesis at circuit level providing feedback to the designer through the exploration of the Pareto frontier. A modified simulated annealing which is able to perform crossover with past anchor points when a local minimum is found which is used as the optimization algorithm on the initial synthesis procedure. After all specifications are met, the algorithm searches for the extreme points of the Pareto frontier in order to obtain a non-exhaustive exploration of the Pareto front. Finally, multi-objective particle swarm optimization is used to spread the results and to find a more accurate frontier. Piecewise linear functions are used as single-objective cost functions to produce a smooth and equal convergence of all measurements to the desired specifications during the composition of the aggregate objective function. To verify the presented technique two circuits were designed, which are: a Miller amplifier with 96 dB Voltage gain, 15.48 MHz unity gain frequency, slew rate of 19.2 V/mu s with a current supply of 385.15 mu A, and a complementary folded cascode with 104.25 dB Voltage gain, 18.15 MHz of unity gain frequency and a slew rate of 13.370 MV/mu s. These circuits were synthesized using a 0.35 mu m technology. The results show that the method provides a fast approach for good solutions using the modified SA and further good Pareto front exploration through its connection to the particle swarm optimization algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis deals with two important research aspects concerning radio frequency (RF) microresonators and switches. First, a new approach for compact modeling and simulation of these devices is presented. Then, a combined process flow for their simultaneous fabrication on a SOI substrate is proposed. Compact models for microresonators and switches are extracted by applying mathematical model order reduction (MOR) to the devices finite element (FE) description in ANSYS c° . The behaviour of these devices includes forms of nonlinearities. However, an approximation in the creation of the FE model is introduced, which enables the use of linear model order reduction. Microresonators are modeled with the introduction of transducer elements, which allow for direct coupling of the electrical and mechanical domain. The coupled system element matrices are linearized around an operating point and reduced. The resulting macromodel is valid for small signal analysis around the bias point, such as harmonic pre-stressed analysis. This is extremely useful for characterizing the frequency response of resonators. Compact modelling of switches preserves the nonlinearity of the device behaviour. Nonlinear reduced order models are obtained by reducing the number of nonlinearities in the system and handling them as input to the system. In this way, the system can be reduced using linear MOR techniques and nonlinearities are introduced directly in the reduced order model. The reduction of the number of system nonlinearities implies the approximation of all distributed forces in the model with lumped forces. Both for microresonators and switches, a procedure for matrices extraction has been developed so that reduced order models include the effects of electrical and mechanical pre-stress. The extraction process is fast and can be done automatically from ANSYS binary files. The method has been applied for the simulation of several devices both at devices and circuit level. Simulation results have been compared with full model simulations, and, when available, experimental data. Reduced order models have proven to conserve the accuracy of finite element method and to give a good description of the overall device behaviour, despite the introduced approximations. In addition, simulation is very fast, both at device and circuit level. A combined process-flow for the integrated fabrication of microresonators and switches has been defined. For this purpose, two processes that are optimized for the independent fabrication of these devices are merged. The major advantage of this process is the possibility to create on-chip circuit blocks that include both microresonators and switches. An application is, for example, aswitched filter bank for wireless transceiver. The process for microresonators fabrication is characterized by the use of silicon on insulator (SOI) wafers and on a deep reactive ion etching (DRIE) step for the creation of the vibrating structures in single-crystal silicon and the use of a sacrificial oxide layer for the definition of resonator to electrode distance. The fabrication of switches is characterized by the use of two different conductive layers for the definition of the actuation electrodes and by the use of a photoresist as a sacrificial layer for the creation of the suspended structure. Both processes have a gold electroplating step, for the creation of the resonators electrodes, transmission lines and suspended structures. The combined process flow is designed such that it conserves the basic properties of the original processes. Neither the performance of the resonators nor the performance of the switches results affected by the simultaneous fabrication. Moreover, common fabrication steps are shared, which allows for cheaper and faster fabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis starts showing the main characteristics and application fields of the AlGaN/GaN HEMT technology, focusing on reliability aspects essentially due to the presence of low frequency dispersive phenomena which limit in several ways the microwave performance of this kind of devices. Based on an equivalent voltage approach, a new low frequency device model is presented where the dynamic nonlinearity of the trapping effect is taken into account for the first time allowing considerable improvements in the prediction of very important quantities for the design of power amplifier such as power added efficiency, dissipated power and internal device temperature. An innovative and low-cost measurement setup for the characterization of the device under low-frequency large-amplitude sinusoidal excitation is also presented. This setup allows the identification of the new low frequency model through suitable procedures explained in detail. In this thesis a new non-invasive empirical method for compact electrothermal modeling and thermal resistance extraction is also described. The new contribution of the proposed approach concerns the non linear dependence of the channel temperature on the dissipated power. This is very important for GaN devices since they are capable of operating at relatively high temperatures with high power densities and the dependence of the thermal resistance on the temperature is quite relevant. Finally a novel method for the device thermal simulation is investigated: based on the analytical solution of the tree-dimensional heat equation, a Visual Basic program has been developed to estimate, in real time, the temperature distribution on the hottest surface of planar multilayer structures. The developed solver is particularly useful for peak temperature estimation at the design stage when critical decisions about circuit design and packaging have to be made. It facilitates the layout optimization and reliability improvement, allowing the correct choice of the device geometry and configuration to achieve the best possible thermal performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic Biology is a relatively new discipline, born at the beginning of the New Millennium, that brings the typical engineering approach (abstraction, modularity and standardization) to biotechnology. These principles aim to tame the extreme complexity of the various components and aid the construction of artificial biological systems with specific functions, usually by means of synthetic genetic circuits implemented in bacteria or simple eukaryotes like yeast. The cell becomes a programmable machine and its low-level programming language is made of strings of DNA. This work was performed in collaboration with researchers of the Department of Electrical Engineering of the University of Washington in Seattle and also with a student of the Corso di Laurea Magistrale in Ingegneria Biomedica at the University of Bologna: Marilisa Cortesi. During the collaboration I contributed to a Synthetic Biology project already started in the Klavins Laboratory. In particular, I modeled and subsequently simulated a synthetic genetic circuit that was ideated for the implementation of a multicelled behavior in a growing bacterial microcolony. In the first chapter the foundations of molecular biology are introduced: structure of the nucleic acids, transcription, translation and methods to regulate gene expression. An introduction to Synthetic Biology completes the section. In the second chapter is described the synthetic genetic circuit that was conceived to make spontaneously emerge, from an isogenic microcolony of bacteria, two different groups of cells, termed leaders and followers. The circuit exploits the intrinsic stochasticity of gene expression and intercellular communication via small molecules to break the symmetry in the phenotype of the microcolony. The four modules of the circuit (coin flipper, sender, receiver and follower) and their interactions are then illustrated. In the third chapter is derived the mathematical representation of the various components of the circuit and the several simplifying assumptions are made explicit. Transcription and translation are modeled as a single step and gene expression is function of the intracellular concentration of the various transcription factors that act on the different promoters of the circuit. A list of the various parameters and a justification for their value closes the chapter. In the fourth chapter are described the main characteristics of the gro simulation environment, developed by the Self Organizing Systems Laboratory of the University of Washington. Then, a sensitivity analysis performed to pinpoint the desirable characteristics of the various genetic components is detailed. The sensitivity analysis makes use of a cost function that is based on the fraction of cells in each one of the different possible states at the end of the simulation and the wanted outcome. Thanks to a particular kind of scatter plot, the parameters are ranked. Starting from an initial condition in which all the parameters assume their nominal value, the ranking suggest which parameter to tune in order to reach the goal. Obtaining a microcolony in which almost all the cells are in the follower state and only a few in the leader state seems to be the most difficult task. A small number of leader cells struggle to produce enough signal to turn the rest of the microcolony in the follower state. It is possible to obtain a microcolony in which the majority of cells are followers by increasing as much as possible the production of signal. Reaching the goal of a microcolony that is split in half between leaders and followers is comparatively easy. The best strategy seems to be increasing slightly the production of the enzyme. To end up with a majority of leaders, instead, it is advisable to increase the basal expression of the coin flipper module. At the end of the chapter, a possible future application of the leader election circuit, the spontaneous formation of spatial patterns in a microcolony, is modeled with the finite state machine formalism. The gro simulations provide insights into the genetic components that are needed to implement the behavior. In particular, since both the examples of pattern formation rely on a local version of Leader Election, a short-range communication system is essential. Moreover, new synthetic components that allow to reliably downregulate the growth rate in specific cells without side effects need to be developed. In the appendix are listed the gro code utilized to simulate the model of the circuit, a script in the Python programming language that was used to split the simulations on a Linux cluster and the Matlab code developed to analyze the data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nell'elaborato è stato svolto uno studio su più livelli degli elementi essenziali del pacemaker asincrono secondo la realizzazione circuitale proposta da Wilson Greatbatch nel 1960. Un primo livello ha riguardato l’analisi teorica del circuito. Un secondo livello ha riguardato un’analisi svolta con LTSPICE. Con questo stesso programma, si è analizzato il segnale di temporizzazione e la forma d’onda sul carico al variare del valore di alcuni componenti chiave del circuito. Infine, si è proceduto alla sua realizzazione su breadboard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic biology has shown that the metabolic behavior of mammalian cells can be altered by genetic devices such as epigenetic and hysteretic switches, timers and oscillators, biocomputers, hormone systems and heterologous metabolic shunts. To explore the potential of such devices for therapeutic strategies, we designed a synthetic mammalian circuit to maintain uric acid homeostasis in the bloodstream, disturbance of which is associated with tumor lysis syndrome and gout. This synthetic device consists of a modified Deinococcus radiodurans-derived protein that senses uric acids levels and triggers dose-dependent derepression of a secretion-engineered Aspergillus flavus urate oxidase that eliminates uric acid. In urate oxidase-deficient mice, which develop acute hyperuricemia, the synthetic circuit decreased blood urate concentration to stable sub-pathologic levels in a dose-dependent manner and reduced uric acid crystal deposits in the kidney. Synthetic gene-network devices providing self-sufficient control of pathologic metabolites represent molecular prostheses, which may foster advances in future gene- and cell-based therapies.