824 resultados para Thermal diffusivity.
Resumo:
We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems.
Resumo:
Breather stability and longevity in thermally relaxing nonlinear arrays depend sensitively on their interactions with other excitations. We review numerical results for the relaxation of breathers in Fermi¿Pasta¿Ulam arrays, with a specific focus on the different relaxation channels and their dependence on the interparticle interactions, dimensionality, initial condition, and system parameters
Resumo:
The magnetically induced splay Fréedericksz transition is reexamined to look for pattern forming phenomena slightly above or below criticality. By using our traditional scheme of stochastic nematodynamic equations, situations are, respectively, found of transient and permanent predominance of transversal periodicities (wave numbers) along the direction perpendicular to the initial orientation within the sample. The relevance of these predictions in relation with recent observations in the electrically driven splay Fréedericksz transition, and in general with other pattern forming phenomena, is stressed.
Resumo:
Thermal analysis, powder diffraction, and Raman scattering as a function of the temperature were carried out on K2BeF4. Moreover, the crystal structure was determined at 293 K from powder diffraction. The compound shows a transition from Pna21 to Pnam space group at 921 K with a transition enthalpy of 5 kJ/mol. The transition is assumed to be first order because the compound shows metastability. Structurally and spectroscopically the transition is similar to those observed in (NH4)2SO4, which suggests that the low-temperature phase is ferroelectric. In order to confirm it, the spontaneous polarization has been computed using an ionic model.
Resumo:
Kasvualustana käytetyn heikosti maatuneen rahkaturpeen lämmönjohtavuus
Resumo:
The major goal of evolutionary thermal biology is to understand how variation in temperature shapes phenotypic evolution. Comparing thermal reaction norms among populations from different thermal environments allows us to gain insights into the evolutionary mechanisms underlying thermal adaptation. Here, we have examined thermal adaptation in six wild populations of the fruit fly (Drosophila melanogaster) from markedly different natural environments by analyzing thermal reaction norms for fecundity, thorax length, wing area, and ovariole number under ecologically realistic fluctuating temperature regimes in the laboratory. Contrary to expectation, we found only minor differences in the thermal optima for fecundity among populations. Differentiation among populations was mainly due to differences in absolute (and partly also relative) thermal fecundity performance. Despite significant variation among populations in the absolute values of morphological traits, we observed only minor differentiation in their reaction norms. Overall, the thermal reaction norms for all traits examined were remarkably similar among different populations. Our results therefore suggest that thermal adaptation in D. melanogaster predominantly involves evolutionary changes in absolute trait values rather than in aspects of thermal reaction norms.
Resumo:
Field studies were conducted over 3 years in southeast Buenos Aires, Argentina, to determine the critical period of weed control in maize (Zea mays L.). The treatments consisted of two different periods of weed interference, a critical weed-free period, and a critical time of weed removal. The Gompertz and logistic equations were fitted to relative yields representing the critical weed-free and the critical time of weed removal, respectively. Accumulated thermal units were used to describe each period of weed-free or weed removal. The critical weed-free period and the critical time of weed removal ranged from 222 to 416 and 128 to 261 accumulated thermal units respectively, to prevent yield losses of 2.5%. Weed biomass proved to be inverse to the crop yield for all the years studied. When weeds competed with the crop from emergence, a large increase in weed biomass was achieved 10 days after crop emergence. However, few weed seedlings emerged and prospered after the 5-6 leaf maize stage (10-20 days after emergence).
Geochemistry of the thermal springs and fumaroles of Basse-Terre Island, Guadeloupe, Lesser Antilles
Resumo:
The purpose of this work was to study jointly the volcanic-hydrothermal system of the high-risk volcano La Soufriere, in the southern part of Basse-Terre, and the geothermal area of Bouillante, on its western coast, to derive an all-embracing and coherent conceptual geochemical model that provides the necessary basis for adequate volcanic surveillance and further geothermal exploration. The active andesitic dome of La Soufriere has erupted eight times since 1660, most recently in 1976-1977. All these historic eruptions have been phreatic. High-salinity, Na-CI geothermal liquids circulate in the Bouillante geothermal reservoir, at temperatures close to 250 degrees C. These Na-CI solutions rise toward the surface, undergo boiling and mixing with groundwater and/or seawater, and feed most Na-CI thermal springs in the central Bouillante area. The Na-Cl thermal springs are surrounded by Na-HCO3 thermal springs and by the Na-Cl thermal spring of Anse a la Barque (a groundwater slightly mixed with seawater), which are all heated through conductive transfer. The two main fumarolic fields of La Soufriere area discharge vapors formed through boiling of hydrothermal aqueous solutions at temperatures of 190-215 degrees C below the ``Ty'' fault area and close to 260 degrees C below the dome summit. The boiling liquid producing the vapors of the Ty fault area has SD and delta(18)O values relatively similar to those of the Na-CI liquids of the Bouillante geothermal reservoir, whereas the liquid originating the vapors of the summit fumaroles is strongly enriched in O-18, due to input of magmatic fluids from below. This process is also responsible for the paucity of CH;I in the fumaroles. The thermal features around La Soufriere dome include: (a) Ca-SO4 springs, produced through absorption of hydrothermal vapors in shallow groundwaters; (b) conductively heated, Ca-Na-HCO3 springs; and (c) two Ca-Na-Cl springs produced through mixing of shallow Ca-SO4 waters and deep Na-Cl hydrothermal liquids. The geographical distribution of the different thermal features of La Soufriere area indicates the presence of: (a) a central zone dominated by the ascent of steam, which either discharges at the surface in the fumarolic fields or is absorbed in shallow groundwaters; and (b) an outer zone, where the shallow groundwaters are heated through conduction or addition of Na-Cl liquids coming from hydrothermal aquifer(s).
Resumo:
Sludges resulting from wastewater treatment processes have a characteristically high water content, which complicates handling operations such as pumping, transport and disposal. To enhance the dewatering of secondary sludge, the effect of ultrasound waves, thermal treatment and chemical conditioning with NaOH have been studied. Two features of treated sludges were examined: their rheological behavior and their dewaterability. The rheological tests consisted of recording shear stress when the shear rate increases and decreases continuously and linearly with time, and when it increases and decreases in steps. Steady-state viscosity and thixotropy were obtained from the rheological tests, and both decreased significantly in all cases with increased treatment intensity. Centrifugation of ultrasonicated and thermally treated sludges allowed the total solid content to be increased by approximately 16.2% and 17.6%, respectively. These dewatered sludges had a lower viscosity and thixotropy than the untreated sludge. In contrast, alkali conditioning barely allowed the sludge to be dewatered by centrifugation, despite decreasing its viscosity and thixotropy.
Resumo:
The paper commented on here R. M. C. de Almeida, S. Gonçalves, I. J. R. Baumvol and F. C. Stedile Phys. Rev. B 61 12992 (2000) claims that the Deal and Grove model of oxidation is unable to describe the kinetics in the thin oxide regime due to two main simplifications: (a) the steady-state assumption and (b) the abrupt Si∕SiO2 interface assumption. Although reasonably good fits are obtained without these simplifications, it will be shown that the values of the kinetic parameters are not reliable and that the solutions given for different partial pressures are erroneous. Finally, it will be shown that the correct solution of their model is unable to predict the oxidation rate enhancement observed in the thin oxide regime and that the predicted width of the interface compatible with the Deal and Grove rate constants is too large
Resumo:
Thermal and field-induced martensite-austenite transition was studied in melt spun Ni50.3Mn35.3Sn14.4 ribbons. Its distinct highly ordered columnarlike microstructure normal to ribbon plane allows the direct observation of critical fields at which field-induced and highly hysteretic reverse transformation starts (H=17kOe at 240K), and easy magnetization direction for austenite and martensite phases with respect to the rolling direction. Single phase L21 bcc austenite with TC of 313K transforms into a 7M orthorhombic martensite with thermal hysteresis of 21K and transformation temperatures of MS=226K, Mf=218K, AS=237K, and Af=244K