975 resultados para Th1-type immune response
Untersuchung von T-Zell-vermittelten Immunantworten in der murinen und humanen kutanen Leishmaniasis
Resumo:
Für die Ausheilung von L. major-Infektionen ist eine effektive Th1-/Tc1-Antwort unerlässlich. Dennoch sind bis heute nicht alle Mechanismen der schützenden Immunabwehr beim Menschen und in der Maus endgültig geklärt. Deshalb bestand das Ziel der vorliegenden Arbeit darin, Th1-/Tc1-Antworten und damit die Schnittstelle zwischen angeborenem und adaptivem Immunsystem eingehender zu untersuchen. Für diesen Ansatz wurde zunächst der Einfluss des genetischen Hintergrundes auf den Verlauf der Infektion anhand von BALB/c- und C57BL/6-Zellen analysiert. Als entscheidender Faktor für Heilung und Suszeptibilität wurde mit Hilfe von Knochenmarkschimären die Herkunft der T und/oder B Zellen identifiziert. Erst die Aktivierung durch Th1-/Tc1-Zellen versetzt L. major-infizierte Makrophagen in die Lage, die intrazellulären Parasiten abzutöten. In diesem Aktivierungsprozess spielt die TNF-induzierte Signalweiterleitung über den TNF-Rezeptor 1 (TNF-R1) eine wichtige Rolle. TNF-R1 ist mit dem Signalmolekül FAN assoziiert. In dieser Arbeit konnte anhand von Mäusen, denen FAN fehlt, die Involvierung dieses Moleküls in der Induktion eines Th1-Zytokinsprofils und in der Kontrolle der Parasitenzahl sowie der lokalen Begrenzung der Infektion gezeigt werden. Weiterhin wurde unter Verwendung immundefizienter Mäuse die Realisierbarkeit eines PBMC-Transfermodells geprüft. Ein solches wird zur Validierung an Mäusen gewonnener Erkenntnisse und als präklinisches Testsystem der humanen kutanen Leishmaniasis dringend benötigt. In allen getesteten Stämmen ließ sich durch den Transfer humaner PBMC die L. major-Infektion beeinflussen. Humane CD4+ und CD8+ T-Zellen waren an den Infektionsstellen präsent und es konnten antigenspezifische Immunreaktionen nnachgewiesen werden. Das PBMC-Transfermodell konnte durch die Transplantation humaner Haut auf immundefiziente Mäuse zusätzlich entscheidend verbessert werden. In diesen Transplantaten ließen sich L. major-Infektionen etablieren und durch zusätzlichen Transfer von PBMC die Zahl humaner CD45+ Zellen an der Infektionsstelle deutlich steigern. In ihrer Gesamtheit trägt die vorliegende Arbeit wesentlich zum Verständnis der Determinanten von Heilung und Suszeptibilität der kutanen Leishmaniasis bei und zeigt neue Ansatzpunkte für eine Beeinflussung des Krankheitsverlaufes auf. Die Etablierung eines präklinischen Testmodells der humanen Leishmaniasis ist entscheidend, um das Wissen über die murine Leishmaniasis auf die humane Erkrankung zu übertragen. So kann dem dauerhaften Problem der Entwicklung von Vakzinen an Mäusen, die keine Wirksamkeit gegen die humane Erkrankung zeigen, begegnet werden. Ein vollständig etabliertes Modell wird es ermöglichen, der humanen Erkrankung zugrundeliegende Mechanismen zu untersuchen und Patienten-spezifisch aber auch allgemeingültig Vakzinierungs-Ansätze und Therapien unter experimentellen Bedingungen zu testen.
Resumo:
Dendritic cells (DCs) represent the first line defence of the innate immune system following infection with pathogens. We exploratively addressed invasion and survival ability of Neospora caninum, a parasite causing abortion in cattle, in mouse bone marrow DCs (BMDCs), and respective cytokine expression patterns. Immature BMDCs were exposed to viable (untreated) and nonviable parasites that had been inactivated by different means. Invasion and/or internalization, as well as intracellular survival and proliferation of tachyzoites were determined by NcGRA2-RT-PCR and transmission electron microscopy (TEM). Cytokine expression was evaluated by reverse transcription (RT)-PCR and cytokine ELISA. Transmission electron microscopy of DCs stimulated with untreated viable parasites revealed that N. caninum was able to invade and proliferate within BMDCs. This was confirmed by NcGRA2-RT-PCR. On the other hand, no viable parasite organisms were revealed by TEM when exposing BMDCs to inactivated parasites (nonviability demonstrated by NcGRA2-RT-PCR). Cytokine expression analysis (as assessed by both RT-PCR and ELISA) demonstrated that both viable and nonviable parasites stimulated mBMDCs to express IL-12p40, IL-10 and TNF-alpha, whereas IL-4 RNA expression was not detected. Thus, exposure of mBMDCs to both viable and nonviable parasites results in the expression of cytokines that are relevant for a mixed Th1/Th2 immune response.
Resumo:
Adjuvants are often composed of different constituents that can be divided into two groups based on their primary activity: the delivery system which carries and presents the vaccine antigen to antigen-presenting cells, and the immunostimulator that activates and modulates the ensuing immune response. Herein, we have investigated the importance of the delivery system and in particular its physical characteristics by comparing the delivery properties of two lipids which differ only in the degree of saturation of the acyl chains, rendering the liposomes either rigid (DDA, dimethyldioctadecylammonium) or highly fluid (DODA, dimethyldioleoylammonium) at physiological temperature. We show that these delivery systems are remarkably different in their ability to prime a Th1-directed immune response with the rigid DDA-based liposomes inducing a response more than 100 times higher compared to that obtained with the fluid DODA-based liposomes. Upon injection with a vaccine antigen, DDA-based liposomes form a vaccine depot that results in a continuous attraction of antigen-presenting cells that engulf a high amount of adjuvant and are subsequently efficiently activated as measured by an elevated expression of the co-stimulatory molecules CD40 and CD86. In contrast, the fluid DODA-based liposomes are more rapidly removed from the site of injection resulting in a lower up-regulation of co-stimulatory CD40 and CD86 molecules on adjuvant-positive antigen-presenting cells. Additionally, the vaccine antigen is readily dissociated from the DODA-based liposomes leading to a population of antigen-presenting cells that are antigen-positive but adjuvant-negative and consequently are not activated. These studies demonstrate the importance of studying in vivo characteristics of the vaccine components and furthermore show that physicochemical properties of the delivery system have a major impact on the vaccine-induced immune response. © 2012 Elsevier B.V. All rights reserved.
Resumo:
A range of particulate delivery systems have been considered as vaccine adjuvants. Of these systems, liposomes offer a range of advantages including versatility and flexibility in design format and their ability to incorporate a range of immunomodulators and antigens. Here we briefly outline research, from within our laboratories, which focused on the systematic evaluation of cationic liposomes as vaccines adjuvants. Our aim was to identify physicochemical characteristics that correlate with vaccine efficacy, with particular consideration of the interlink between depot-forming action and immune responses. A variety of parameters were investigated and over a range of studies we have confirmed that cationic liposomes, based on dimethyldioctadecylammonium bromide and trehalose 6,6'-dibehenate formed a depot at the injection site, which stimulates recruitment of antigen presenting cells to the injection site and promotes strong humoral and cell-mediated immune responses. Physicochemical factors which promote a strong vaccine depot include the combination of a high cationic charge and electrostatic binding of the antigen to the liposome system and the use of lipids with high transition temperatures, which form rigid bilayer vesicles. Reduction in vesicle size of cationic vesicles did not promote enhanced drainage from the injection site. However, reducing the cationic nature through substitution of the cationic lipid for a neutral lipid, or by masking of the charge using PEGylation, resulted in a reduced depot formation and reduced Th1-type immune responses, while Th2-type responses were less influenced. These studies confirm that the physicochemical characteristics of particulate-based adjuvants play a key role in the modulation of immune responses.
Resumo:
INTRODUCTION Human host immune response following infection with the new variant of A/H1N1 pandemic influenza virus (nvH1N1) is poorly understood. We utilize here systemic cytokine and antibody levels in evaluating differences in early immune response in both mild and severe patients infected with nvH1N1. METHODS We profiled 29 cytokines and chemokines and evaluated the haemagglutination inhibition activity as quantitative and qualitative measurements of host immune responses in serum obtained during the first five days after symptoms onset, in two cohorts of nvH1N1 infected patients. Severe patients required hospitalization (n = 20), due to respiratory insufficiency (10 of them were admitted to the intensive care unit), while mild patients had exclusively flu-like symptoms (n = 15). A group of healthy donors was included as control (n = 15). Differences in levels of mediators between groups were assessed by using the non parametric U-Mann Whitney test. Association between variables was determined by calculating the Spearman correlation coefficient. Viral load was performed in serum by using real-time PCR targeting the neuraminidase gene. RESULTS Increased levels of innate-immunity mediators (IP-10, MCP-1, MIP-1beta), and the absence of anti-nvH1N1 antibodies, characterized the early response to nvH1N1 infection in both hospitalized and mild patients. High systemic levels of type-II interferon (IFN-gamma) and also of a group of mediators involved in the development of T-helper 17 (IL-8, IL-9, IL-17, IL-6) and T-helper 1 (TNF-alpha, IL-15, IL-12p70) responses were exclusively found in hospitalized patients. IL-15, IL-12p70, IL-6 constituted a hallmark of critical illness in our study. A significant inverse association was found between IL-6, IL-8 and PaO2 in critical patients. CONCLUSIONS While infection with the nvH1N1 induces a typical innate response in both mild and severe patients, severe disease with respiratory involvement is characterized by early secretion of Th17 and Th1 cytokines usually associated with cell mediated immunity but also commonly linked to the pathogenesis of autoimmune/inflammatory diseases. The exact role of Th1 and Th17 mediators in the evolution of nvH1N1 mild and severe disease merits further investigation as to the detrimental or beneficial role these cytokines play in severe illness.
Resumo:
American tegumentary leishmaniasis (ATL) is a disease whose clinical features are strongly related to the type of immune response it induces. Herein we report an atypical presentation of cutaneous leishmaniasis in a woman with a severe and extensive sore located in her leg, and we describe the differences between the usual local immune response in ATL and the local immune response in this patient. We observed an intense inflammatory response characterized by Th1 cells and cytokines with conspicuous expression of Toll-like receptor 3 (TLR-3). Few parasites were present, but there was an extensive tissue damage. We also discuss the immunological factors that could be related to the atypical presentation.
Resumo:
Successful treatment in allergic, autoimmune, and infectious diseases often requires altering the nature of a detrimental immune response mediated by a particular CD4+ T helper (Th) cell subset. While several factors contribute to the development of CD4+ Th1 and Th2 cells, the requirements for switching an established response are not understood. Here we use infection with Leishmania major as a model to investigate those requirements. We report that treatment with interleukin 12 (IL-12), in combination with the antimony-based leishmanicidal drug Pentostam, induces healing in L. major-infected mice and that healing is associated with a switch from a Th2 to a Th1 response. The data suggest that decreasing antigen levels may be required for IL-12 to inhibit a Th2 response and enhance a Th1 response. These observations are important for treatment of nonhealing forms of human leishmaniasis and also demonstrate that in a chronic infectious disease an inappropriate Th2 response can be switched to an effective Th1 response.
Resumo:
Objectives - Cationic liposomes of dimethyldioctadecylammonium bromide (DDA) combined with trehalose 6,6'-dibehenate (TDB) elicit strong cell-mediated and antibody immune responses; DDA facilitates antigen adsorption and presentation while TDB potentiates the immune response. To further investigate the role of DDA, DDA was replaced with the neutral lipid of distearoyl-sn-glycero-3-phosphocholine (DSPC) over a series of concentrations and these systems investigated as adjuvants for the delivery of Ag85B–ESAT-6-Rv2660c, a multistage tuberculosis vaccine. Methods - Liposomal were prepared at a 5?:?1 DDA–TDB weight ratio and DDA content incrementally replaced with DSPC. The physicochemical characteristics were assessed (vesicle size, zeta potential and antigen loading), and the ability of these systems to act as adjuvants was considered. Key findings - As DDA was replaced with DSPC within the liposomal formulation, the cationic nature of the vesicles decreases as does electrostatically binding of the anionic H56 antigen (Hybrid56; Ag85B-ESAT6-Rv2660c); however, only when DDA was completed replaced with DSPC did vesicle size increase significantly. T-helper 1 (Th1)-type cell-mediated immune responses reduced. This reduction in responses was attributed to the replacement of DDA with DSPC rather than the reduction in DDA dose concentration within the formulation. Conclusion - These results suggest Th1 responses can be controlled by tailoring the DDA/DSPC ratio within the liposomal adjuvant system.
Resumo:
Objectives Cationic liposomes of dimethyldioctadecylammonium bromide (DDA) combined with trehalose 6,6′-dibehenate (TDB) elicit strong cell-mediated and antibody immune responses; DDA facilitates antigen adsorption and presentation while TDB potentiates the immune response. To further investigate the role of DDA, DDA was replaced with the neutral lipid of distearoyl-sn- glycero-3-phosphocholine (DSPC) over a series of concentrations and these systems investigated as adjuvants for the delivery of Ag85B-ESAT-6-Rv2660c, a multistage tuberculosis vaccine. Methods Liposomal were prepared at a 5: 1 DDA-TDB weight ratio and DDA content incrementally replaced with DSPC. The physicochemical characteristics were assessed (vesicle size, zeta potential and antigen loading), and the ability of these systems to act as adjuvants was considered. Key findings As DDA was replaced with DSPC within the liposomal formulation, the cationic nature of the vesicles decreases as does electrostatically binding of the anionic H56 antigen (Hybrid56; Ag85B-ESAT6-Rv2660c); however, only when DDA was completed replaced with DSPC did vesicle size increase significantly. T-helper 1 (Th1)-type cell-mediated immune responses reduced. This reduction in responses was attributed to the replacement of DDA with DSPC rather than the reduction in DDA dose concentration within the formulation. Conclusion These results suggest Th1 responses can be controlled by tailoring the DDA/DSPC ratio within the liposomal adjuvant system. © 2013 Royal Pharmaceutical Society.
Resumo:
There is recent evidence that galectin-3 participates in immunity to infections, mostly by tuning cytokine production. We studied the balance of Th1/Th2 responses to P. brasiliensis experimental infection in the absence of galectin-3. The intermediate resistance to the fungal infection presented by C57BL/6 mice, associated with the development of a mixed type of immunity, was replaced with susceptibility to infection and a Th2-polarized immune response, in galectin-3-deficient (gal3(-/-)) mice. Such a response was associated with defective inflammatory and delayed type hypersensitivity (DTH) reactions, high IL-4 and GATA-3 expression and low nitric oxide production in the organs of infected animals. Gal3(-/-) macrophages exhibited higher TLR2 transcript levels and IL-10 production compared to wild-type macrophages after stimulation with P. brasiliensis antigens. We hypothesize that, during an in vivo P. brasiliensis infection, galectin-3 exerts its tuning role on immunity by interfering with the generation of regulatory macrophages, thus hindering the consequent Th2-polarized type of response.
Resumo:
Periapical chronic lesion formation involves activation of the immune response and alveolar bone resorption around the tooth apex. However, the overall roles of T helper type 1 (Th1), Th2, and T-regulatory cell (Treg) responses and osteoclast regulatory factors in periapical cysts and granulomas have not been fully determined. This study aimed to investigate whether different forms of apical periodontitis, namely cysts and granulomas, show different balances of Th1, Th2 regulators, Treg markers, and factors involved in osteoclast chemotaxis and activation. Gene expression of these factors was assessed using quantitative real-time polymerase chain reaction, in samples obtained from healthy gingiva (n = 8), periapical granulomas (n = 20), and cysts (n = 10). Periapical cysts exhibited a greater expression of GATA-3, while a greater expression of T-bet, Foxp3, and interleukin-10 (IL-10) was seen in granulomas. The expression of interferon-gamma, IL-4, and transforming growth factor-beta was similar in both lesions. Regarding osteoclastic factors, while the expression of SDF-1 alpha/CXCL12 and CCR1 was higher in cysts, the expression of RANKL was significantly higher in granulomas. Both lesions exhibited similar expression of CXCR4, CK beta 8/CCL23, and osteoprotegerin, which were significantly higher than in control. Our results showed a predominance of osteoclast activity in granulomas that was correlated with the Th1 response. The concomitant expression of Treg cell markers suggests a possible suppression of the Th1 response in granulomas. On the other hand, in cysts the Th2 activity is augmented. The mechanisms of periradicular lesion development are still not fully understood but the imbalance of immune and osteoclastic cell activity in cysts and granulomas seems to be critically regulated by Treg cells.
Resumo:
Neospora caninum is an apicomplexan parasite responsible for major economic losses due to abortions in cattle. Toll-like receptors (TLRs) sense specific microbial products and direct downstream signaling pathways in immune cells, linking innate, and adaptive immunity. Here, we analyze the role of TLR2 on innate and adaptive immune responses during N. caninum infection. Inflammatory peritoneal macrophages and bone marrow-derived dendritic cells exposed to N. caninum-soluble antigens presented an upregulated expression of TLR2. Increased receptor expression was correlated to TLR2/MyD88-dependent antigen-presenting cell maturation and pro-inflammatory cytokine production after stimulation by antigens. Impaired innate responses observed after infection of mice genetically deficient for TLR2((-/-)) was followed by downregulation of adaptive T helper 1 (Th1) immunity, represented by diminished parasite-specific CD4(+) and CD8(+) T-cell proliferation, IFN-gamma:interleukin (IL)-10 ratio, and IgG subclass synthesis. In parallel, TLR2(-/-) mice presented higher parasite burden than wild-type (WT) mice at acute and chronic stages of infection. These results show that initial recognition of N. caninum by TLR2 participates in the generation of effector immune responses against N. caninum and imply that the receptor may be a target for future prophylactic strategies against neosporosis. Immunology and Cell Biology (2010) 88, 825-833; doi:10.1038/icb.2010.52; published online 20 April 2010
Resumo:
Paracoccidioidomycosis, the major systemic mycosis in Latin America, is caused by fungus Paracoccidioides brasiliensis. To analyze the influence of inducible nitric oxide synthase (iNOS) in this disease, iNOS-deficient (iNOS(-/-)) and wild-type (WT) mice were infected intravenously with P. brasiliensis 18 isolate. We found that, unlike WT mice, iNOS(-/-) mice did not control fungal proliferation, and began to succumb to infection by day 50 after inoculation of yeast cells. Typical inflammatory granulomas were found in WT mice, while, iNOS(-/-) mice presented incipient granulomas with intense inflammatory process and necrosis. Additionally, splenocytes from iNOS(-/-) mice did not produce nitric oxide, however, their proliferative response to Con-A was impaired, just like infected WT mice. Moreover, infected iNOS(-/-) mice presented a mixed pattern of immune response, releasing high levels of both Th1 (IL-12, IFN-gamma and TNF-alpha) and Th2 (IL-4 and IL-10) cytokines. These data suggest that the enzyme iNOS is a resistance factor during paracoccidioidomycosis by controlling fungal proliferation, by influencing cytokines production, and by appeasing the development of a high inflammatory response and consequently formation of necrosis. However, iNOS-derived nitric oxide seems not being the unique factor responsible for immunosuppression observed in infections caused by P. brasiliensis. (c) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Early pregnancy factor (EPF) is a secreted protein, present in serum during early pregnancy and essential for maintaining viability of the embryo. It is a homologue of chaperonin 10 (Cpn10) but, unlike Cpn10, it has an extracellular role. EPF has immunosuppressive and growth regulatory properties. Previously we have reported the preparation of recombinant EPF (rEPF) and shown that treatment with rEPF will suppress clinical signs of MBP-EAE in Lewis rats and PLP-EAE in SJL/J mice. In the present study, these findings have been extended to investigate possible mechanisms involved in the action of EPF. Following treatment of mice with rEPF from the day of inoculation, there were fewer infiltrating CD3+ and CD4+ cells in the parenchyma of the spinal cord during the onset of disease and after the initial episode, compared with mice treated with vehicle. Expression of the integrins LFA-1, VLA-4 and Mac-1 and of members of the immunoglobulin superfamily of adhesion molecules ICAM-1 and VCAM-1 was suppressed in the central nervous system (CNS) following rEPF treatment. The expression of PECAM-1 was not affected. To determine if rEPF suppressed T cell activation in the periphery, the delayed-type hypersensitivity (DTH) reaction of normal BALB/c mice to trinitrochlorobenzene (TNCB) following treatment with rEPF was studied. The results showed that treatment with rEPF suppressed the DTH reaction, demonstrating the ability of EPF to downregulate the cell-mediated immune response. These results indicate that suppression of immunological mechanisms by rEPF plays a major role in the reduction of clinical signs of disease in experimental autoimmune encephalomyelitis (EAE). (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Hepatitis D virus (HDV) is endemic in the Amazon Region and its pathophysiology is the most severe among viral hepatitis. Treatment is performed with pegylated interferon and the immune response appears to be important for infection control. HDV patients were studied: untreated and polymerase chain reaction (PCR) positive (n = 9), anti-HDV positive and PCR negative (n = 8), and responders to treatment (n = 12). The cytokines, interleukin (IL)-2 (p = 0.0008) and IL-12 (p = 0.02) were differentially expressed among the groups and were also correlated (p = 0.0143). Future studies will be conducted with patients at different stages of treatment, associating the viral load with serum cytokines produced, thereby attempting to establish a prognostic indicator of the infection.