808 resultados para Textile fibres, Synthetic
Resumo:
The monodentate and bidentate pyridyl phosphines, PR3 and R2P(CH2)2PR2, where R=3- or 4-pyridyl can be prepared in high yields by treatment of butyllithium/TMEDA/3- or 4-bromopyridine with PCl3 or Cl2P(CH2)2PCl2 at low temperature. 1,2-Bis(di-2-pyridylphosphino)ethane is conveniently synthesised by an alternative route involving reaction of 1,2-dibromoethane with lithium di-2-pyridylphosphide.
Resumo:
We examine the trade credit linkages among firms within a supply chain to reckon the effect of such linkages on the propagation of liquidity shocks from downstream to upstream firms. We choose a sample appropriate for this task, consisting of a large data set of Italian firms from the textile industry, a well known example of a comprehensive manufacturing cluster featuring a large number of small and specialized firms at each level of the supply chain. The results of the analysis indicate that the level of trade credit that firms provide to their suppliers is positively related to the level of trade credit granted to their clients: when the level of trade credit granted to clients divided by sales goes up by 1, the level of trade credit provided to suppliers divided by cost-of goods-sold goes up by an amount that varies between 0,22 and 0,52. Since all firms along the chain are linked by trade credit relationships, an increase in the level of trade credit granted by wholesalers generates a liquidity cascade throughout the chain. We designate the overall increase in the level of trade credit among all firms in the chain as a result of a unitary impulse in the level of trade credit granted by wholesalers as the multiplier effect of trade credit for the industry chain. We estimate such multiplier to vary between 1.28 and 2.04. We also investigate the effect of final demand on the level of trade credit sourced by firms at various levels of the chain and, in particular, whether such effect is amplified for firms further up in the chain as a result of liquidity propagation via trade credit linkages. We uncover evidence of such amplification when the links of liquidity transmission along the chain are individually modeled and estimated. An unitary increase in wholesalers’ sales is found to produce an effect on trade payables among firms at the top of the chain (i.e., Preparers and Spinners) that is more than twice as big as the corresponding effect among firms at the bottom of the chain (i.e., Wholesalers).
Resumo:
Cystatin Related Epididymal Spermatogenic protein (CRES) is expressed in both the testis and epididymis and found associated with spermatozoa. It appears as non-glycosylated (14 and 12 kDa) and glycosylated isoforms (19 and 17 kDa). The role of CRES is enigmatic and dependent on localization of its isoforms, which is the objective of this study. The initial approach was to investigate testicular and epididymal origins of these isoforms by immunohistochemistry and immunogold cytochemistry. To further pinpoint CRES localization we then selectively extracted and fractionated epididymal spermatozoa in order to find by immunoblotting which sperm fractions contained CRES isoforms. Immunohistochemical analysis of mouse spermatogenesis showed that CRES was expressed in the tail cytoplasm of elongating spermatids from step 9-16, with a pattern reminiscent of outer dense fibre (ODF) proteins. Ultrastructural immunocytochemistry revealed that the immunogold label was concentrated over growing ODFs and mitochondrial sheath in the testes which persisted in spermatozoa through the epididymis. Sequential extractions of isolated sperm tails with Triton X-100-dithiothreitol (DTT) to remove the mitochondrial sheath, whose extract contained an unrelated 66 kDa immunoreactive band, followed by either sodium dodecyl sulfate (SDS)-DTT or urea-DTT to solubilise accessory fibres of the tail revealed a 14 kDa immunoreactive band associated with the ODF. In addition, Western blots revealed glycosylated and non-glycosylated CRES isoforms in nonyl phenoxylpolyethoxylethanol (NP40) extracts of the caput, but not cauda, sperm. Immunohistochemical analysis of the caput and cauda epithelium showed that CRES is secreted by the Golgi apparatus of the ii initial segment, fills the proximal caput lumen, and disappears by mid caput. Western blots of caput and cauda tissue and luminal fluid revealed 14 and 19 kDa immunoreactive bands in caput tissues and luminal fluid, but not in the cauda. This study concludes that there are two origins of CRES, one arising in the testis and the other in the epididymis. Testicular CRES is ionically and covalently associated with the ODF while epididymal CRES is detergent soluble and is most likely associated temporarily with the surface of caput epididymal sperm.
Resumo:
The high-affinity 67-kd laminin receptor (67LR) is expressed by proliferating endothelial cells during retinal neovascularization. The role of 67LR has been further examined experimentally by administration of selective 67LR agonists and antagonists in a murine model of proliferative retinopathy. These synthetic 67LR ligands have been previously shown to stimulate or inhibit endothelial cell motility in vitro without any direct effect on proliferation. In the present study, a fluorescently labeled 67LR antagonist (EGF33–42) was injected intraperitoneally into mice and its distribution in the retina was assessed by confocal scanning laser microscopy. Within 2 hours this peptide was localized to the retinal vasculature, including preretinal neovascular complexes, and a significant amount had crossed the blood retinal barrier. For up to 24 hours postinjection, the peptide was still present in the retinal vascular walls and, to a lesser extent, in the neural retina. Non-labeled EGF33–42 significantly inhibited pre-retinal neovascularization in comparison to controls treated with phosphate-buffered saline or scrambled peptide (P <0.0001). The agonist peptide (Lamß1925–933) also significantly inhibited proliferative retinopathy; however, it caused a concomitant reduction in retinal ischemia in this model by promoting significant revascularization of the central retina (P <0.001). Thus, 67LR appears to be an important target receptor for the modulation of retinal neovascularization. Agonism of this receptor may be valuable in reducing the hypoxia-stimulated release of angiogenic growth factors which drives retinal angiogenesis.