994 resultados para Terminazione forzata, Flight Termination System, FTS, APR


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main focus of this thesis is to address the relative localization problem of a heterogenous team which comprises of both ground and micro aerial vehicle robots. This team configuration allows to combine the advantages of increased accessibility and better perspective provided by aerial robots with the higher computational and sensory resources provided by the ground agents, to realize a cooperative multi robotic system suitable for hostile autonomous missions. However, in such a scenario, the strict constraints in flight time, sensor pay load, and computational capability of micro aerial vehicles limits the practical applicability of popular map-based localization schemes for GPS denied navigation. Therefore, the resource limited aerial platforms of this team demand simpler localization means for autonomous navigation. Relative localization is the process of estimating the formation of a robot team using the acquired inter-robot relative measurements. This allows the team members to know their relative formation even without a global localization reference, such as GPS or a map. Thus a typical robot team would benefit from a relative localization service since it would allow the team to implement formation control, collision avoidance, and supervisory control tasks, independent of a global localization service. More importantly, a heterogenous team such as ground robots and computationally constrained aerial vehicles would benefit from a relative localization service since it provides the crucial localization information required for autonomous operation of the weaker agents. This enables less capable robots to assume supportive roles and contribute to the more powerful robots executing the mission. Hence this study proposes a relative localization-based approach for ground and micro aerial vehicle cooperation, and develops inter-robot measurement, filtering, and distributed computing modules, necessary to realize the system. The research study results in three significant contributions. First, the work designs and validates a novel inter-robot relative measurement hardware solution which has accuracy, range, and scalability characteristics, necessary for relative localization. Second, the research work performs an analysis and design of a novel nonlinear filtering method, which allows the implementation of relative localization modules and attitude reference filters on low cost devices with optimal tuning parameters. Third, this work designs and validates a novel distributed relative localization approach, which harnesses the distributed computing capability of the team to minimize communication requirements, achieve consistent estimation, and enable efficient data correspondence within the network. The work validates the complete relative localization-based system through multiple indoor experiments and numerical simulations. The relative localization based navigation concept with its sensing, filtering, and distributed computing methods introduced in this thesis complements system limitations of a ground and micro aerial vehicle team, and also targets hostile environmental conditions. Thus the work constitutes an essential step towards realizing autonomous navigation of heterogenous teams in real world applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The early Pliocene warm phase was characterized by high sea surface temperatures and a deep thermocline in the eastern equatorial Pacific. A new hypothesis suggests that the progressive closure of the Panamanian seaway contributed substantially to the termination of this zonally symmetric state in the equatorial Pacific. According to this hypothesis, intensification of the Atlantic meridional overturning circulation (AMOC) - induced by the closure of the gateway - was the principal cause of equatorial Pacific thermocline shoaling during the Pliocene. In this study, twelve Panama seaway sensitivity experiments from eight ocean/climate models of different complexity are analyzed to examine the effect of an open gateway on AMOC strength and thermocline depth. All models show an eastward Panamanian net throughflow, leading to a reduction in AMOC strength compared to the corresponding closed-Panama case. In those models that do not include a dynamic atmosphere, deepening of the equatorial Pacific thermocline appears to scale almost linearly with the throughflow-induced reduction in AMOC strength. Models with dynamic atmosphere do not follow this simple relation. There are indications that in four out of five models equatorial wind-stress anomalies amplify the tropical Pacific thermocline deepening. In summary, the models provide strong support for the hypothesized relationship between Panama closure and equatorial Pacific thermocline shoaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The automated transfer of flight logbook information from aircrafts into aircraft maintenance systems leads to reduced ground and maintenance time and is thus desirable from an economical point of view. Until recently, flight logbooks have not been managed electronically in aircrafts or at least the data transfer from aircraft to ground maintenance system has been executed manually. Latest aircraft types such as the Airbus A380 or the Boeing 787 do support an electronic logbook and thus make an automated transfer possible. A generic flight logbook transfer system must deal with different data formats on the input side – due to different aircraft makes and models – as well as different, distributed aircraft maintenance systems for different airlines as aircraft operators. This article contributes the concept and top level distributed system architecture of such a generic system for automated flight log data transfer. It has been developed within a joint industry and applied research project. The architecture has already been successfully evaluated in a prototypical implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The LISA Path finder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Path finder spacecraft will perform drag-free flight about a test mass while measuring the acceleration of this primary test mass relative to a second reference test mass. Because the reference test mass is contained within the same spacecraft, it is necessary to apply forces on it to maintain its position and attitude relative to the spacecraft. These forces are a potential source of acceleration noise in the LISA Path finder system that are not present in the full LISA con figuration. While LISA Path finder has been designed to meet it's primary mission requirements in the presence of this noise, recent estimates suggest that the on-orbit performance may be limited by this 'suspension noise'. The drift-mode or free-flight experiments provide an opportunity to mitigate this noise source and further characterize the underlying disturbances that are of interest to the designers of LISA-like instruments. This article provides a high-level overview of these experiments and the methods under development to analyze the resulting data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the optical design of the far infrared imaging spectrometer for the JAXA's SPICA mission. The SAFARI instrument, is a cryogenic imaging Fourier transform spectrometer (iFTS), designed to perform backgroundlimited spectroscopic and photometric imaging in the band 34-210 μm. The all-reflective optical system is highly modular and consists of three main modules; input optics module, interferometer module (FTS) and camera bay optics. A special study has been dedicated to the spectroscopic performance of the instrument, in which the spectral response and interference of the instrument have been modeled, as the FTS mechanism scans over the total desired OPD range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On November 16, 2022, the NASA’s Space Launch System (SLS) has been launched for the first time in the context of Artemis-1 mission where, together with the Orion Multi-Purpose Crew Vehicle, a set of 10 CubeSats have been delivered into a translunar trajectory. Among the small satellites deployed during Artemis-1 there is ArgoMoon, a 6U CubeSat built by the Italian company Argotec and coordinated by Italian Space Agency (ASI). The primary goal of ArgoMoon is to capture images of the Interim Cryogenic Propulsion Stage. The ArgoMoon trajectory has been designed as a highly elliptical geocentric orbit, with several encounters with the Moon. In order to successfully fly ArgoMoon along the designed cis-lunar trajectory, a ground-based navigation system has been developed exploiting the guidance techniques also used for regular deep space missions. The navigation process is subdivided into Orbit Determi- nation (OD) and a Flight Path Control (FPC), and it is designed to follow the reference trajectory, prevent impacts with the Earth and the Moon, intensively test the navigation techniques, and guarantee the spacecraft disposal at the end of the mission. The work done in this thesis has accomplished the navigation of ArgoMoon, covering all aspects of the project life, from pre-launch design and analysis to actual operations. Firstly, the designed navigation process and the pre-mission assessment of its performance will be presented. Then, the results of the ArgoMoon navigation operations performed after the launch in November 2022 will be described in detail by discussing the main encountered challenges and the adopted solutions. The results of the operations confirmed the robustness of the designed navigation which allowed to accurately estimate the trajectory of ArgoMoon despite a series of complex events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The High Energy Rapid Modular Ensemble of Satellites (HERMES) is a new mission concept involving the development of a constellation of six CubeSats in low Earth orbit with new miniaturized instruments that host a hybrid Silicon Drift Detector/GAGG:Ce based system for X-ray and γ-ray detection, aiming to monitor high-energy cosmic transients, such as Gamma Ray Bursts and the electromagnetic counterparts of gravitational wave events. The HERMES constellation will also operate together with the Australian-Italian SpIRIT mission, which will house a HERMES-like detector. The HERMES pathfinder mini-constellation, consisting of six satellites plus SpIRIT, is likely to be launched in 2023. The HERMES detectors are based on the heritage of the Italian ReDSoX collaboration, with joint design and production by INFN-Trieste and Fondazione Bruno Kessler, and the involvement of several Italian research institutes and universities. An application-specific, low-noise, low-power integrated circuit (ASIC) called LYRA was conceived and designed for the HERMES readout electronics. My thesis project focuses on the ground calibrations of the first HERMES and SpIRIT flight detectors, with a performance assessment and characterization of the detectors. The first part of this work addresses measurements and experimental tests on laboratory prototypes of the HERMES detectors and their front-end electronics, while the second part is based on the design of the experimental setup for flight detector calibrations and related functional tests for data acquisition, as well as the development of the calibration software. In more detail, the calibration parameters (such as the gain of each detector channel) are determined using measurements with radioactive sources, performed at different operating temperatures between -20°C and +20°C by placing the detector in a suitable climate chamber. The final part of the thesis involves the analysis of the calibration data and a discussion of the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone marrow is organized in specialized microenvironments known as 'marrow niches'. These are important for the maintenance of stem cells and their hematopoietic progenitors whose homeostasis also depends on other cell types present in the tissue. Extrinsic factors, such as infection and inflammatory states, may affect this system by causing cytokine dysregulation (imbalance in cytokine production) and changes in cell proliferation and self-renewal rates, and may also induce changes in the metabolism and cell cycle. Known to relate to chronic inflammation, obesity is responsible for systemic changes that are best studied in the cardiovascular system. Little is known regarding the changes in the hematopoietic system induced by the inflammatory state carried by obesity or the cell and molecular mechanisms involved. The understanding of the biological behavior of hematopoietic stem cells under obesity-induced chronic inflammation could help elucidate the pathophysiological mechanisms involved in other inflammatory processes, such as neoplastic diseases and bone marrow failure syndromes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To compare time and risk to biochemical recurrence (BR) after radical prostatectomy of two chronologically different groups of patients using the standard and the modified Gleason system (MGS). Cohort 1 comprised biopsies of 197 patients graded according to the standard Gleason system (SGS) in the period 1997/2004, and cohort 2, 176 biopsies graded according to the modified system in the period 2005/2011. Time to BR was analyzed with the Kaplan-Meier product-limit analysis and prediction of shorter time to recurrence using univariate and multivariate Cox proportional hazards model. Patients in cohort 2 reflected time-related changes: striking increase in clinical stage T1c, systematic use of extended biopsies, and lower percentage of total length of cancer in millimeter in all cores. The MGS used in cohort 2 showed fewer biopsies with Gleason score ≤ 6 and more biopsies of the intermediate Gleason score 7. Time to BR using the Kaplan-Meier curves showed statistical significance using the MGS in cohort 2, but not the SGS in cohort 1. Only the MGS predicted shorter time to BR on univariate analysis and on multivariate analysis was an independent predictor. The results favor that the 2005 International Society of Urological Pathology modified system is a refinement of the Gleason grading and valuable for contemporary clinical practice.