989 resultados para THYROID-STIMULATING HORMONE


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thyroid hormones (THs) have long been known to have regulatory roles in the differentiation and maturation of vertebrate embryos, beginning with the knowledge that hormones of maternal origin are essential for human fetal central nervous and respiratory system development. Precise measurements of circulating THs led to insights into their critically important actions throughout vertebrate growth and development, initially with amphibian metamorphosis and including embryogenesis in fishes. Thyroid cues for larval fish differentiation are enhanced by glucocorticoid hormones, which promote deiodinase activity and thereby increase the generation of triiodothyronine (T-3) from the less bioactive thyroxin (T-4). Glucocorticoids also induce the expression of thyroid hormone receptors in some vertebrates. Maternally derived thyroid hormones and cortisol are deposited in fish egg yolk and accelerate larval organ system differentiation until larvae become capable of endogenous endocrine function. Increases in the T-3/T-4 ratio during larval development may reflect the regulatory importance of maternal thyroid hormones. Experimental applications of individual hormones have produced mixed results, but treatments with combinations of thyroid and corticoid hormones consistently promote larval fish development and improve survival rates. The developmental and survival benefits of maternal endocrine provisioning are increased in viviparous fishes, in which maternal/larval chemical contact is prolonged. Treatments with exogenous thyroid and corticoid hormones consistently promote development and reduce mortality rates in larval fishes, with potential hatchery-scale applications in aquaculture.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to evaluate some factors likely to be involved in the maternal and fetal growth impairment due to alimentary protein deficiency, the circulating levels of triiodothyronine (T 3) and thyroxine (T 4) were studied in 4 young (45-day-old) female rat groups: control and malnourished, both nonpregnant and pregnant; similarly schedules groups were studied using adult (100-day-old) rats. Circulating levels of T 4 were higher in nonpregnant, malnourished young rats in their corresponding controls. T 3 levels were higher in young malnourished animals and lower in adult malnourished animals, nonpregnant or pregnant, as compared to controls. Pups from young malnourished mothers showed significantly lower birth weights than those from controls. The present results suggest that there are age differences in thyroid function, as affected by protein-calorie malnutrition in pregnant and non-pregnant rats. On the other hand, the circulating thyroid hormone levels were not importantly affected by the mother dietary protein restriction under our experimental conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated thyroid hormone levels in menopausal BrC patients and verified the action of triiodothyronine on genes regulated by estrogen and by triiodothyronine itself in BrC tissues. We selected 15 postmenopausal BrC patients and a control group of 18 postmenopausal women without BrC. We measured serum TPO-AB, TSH, FT4, and estradiol, before and after surgery, and used immunohistochemistry to examine estrogen and progesterone receptors. BrC primary tissue cultures received the following treatments: ethanol, triiodothyronine, triiodothyronine plus 4-hydroxytamoxifen, 4-hydroxytamoxifen, estrogen, or estrogen plus 4-hydroxytamoxifen. Genes regulated by estrogen (TGFA, TGFB1, and PGR) and by triiodothyronine (TNFRSF9, BMP-6, and THRA) in vitro were evaluated. TSH levels in BrC patients did not differ from those of the control group (1.34 ± 0.60 versus 2.41 ± 1.10  μ U/mL), but FT4 levels of BrC patients were statistically higher than controls (1.78 ± 0.20 versus 0.95 ± 0.16 ng/dL). TGFA was upregulated and downregulated after estrogen and triiodothyronine treatment, respectively. Triiodothyronine increased PGR expression; however 4-hydroxytamoxifen did not block triiodothyronine action on PGR expression. 4-Hydroxytamoxifen, alone or associated with triiodothyronine, modulated gene expression of TNFRSF9, BMP-6, and THRA, similar to triiodothyronine treatment. Thus, our work highlights the importance of thyroid hormone status evaluation and its ability to interfere with estrogen target gene expression in BrC samples in menopausal women.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To examine the effect of different doses of triiodothyronine (T3) on mRNA levels of thyroid hormone receptors, TRα and TRβ, at different times. Materials and methods: 3T3-L1 adipocytes were incubated with T3 (physiological dose: F; supraphysiological doses: SI or SII), or without T3 (control, C) for 0.5, 1, 6, or 24h. TRα and TRβ mRNA was detected using real-time polymerase chain reaction. Results: F increased TRβ mRNA levels at 0.5h. After 1h, TRα levels increased with F and SI and TRβ levels decreased with SII compared with C, F, and SI. After 6h, both genes were suppressed at all concentrations. In 24h, TRα and TRβ levels were similar to those of C group. Conclusions: T3 action with F began at 1h for TRα and at 0.5h for TRβ. These results suggest the importance of knowing the times and doses that activate T3 receptors in adipocytes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE. The expression of S- and M-opsins in the murine retina is altered in different transgenic mouse models with mutations in the thyroid hormone receptor (TR)-beta gene, demonstrating an important role of thyroid hormone (TH) in retinal development. METHODS. The spatial expression of S- and M-opsin was compared in congenital hypothyroidism and in two different TR mutant mouse models. One mouse model contains a ligand-binding mutation that abolishes TH binding and results in constitutive binding to nuclear corepressors. The second model contains a mutation that blocks binding of coactivators to the AF-2 domain without affecting TH binding. RESULTS. Hypothyroid newborn mice showed an increase in S- opsin expression that was completely independent of the genotype. Concerning M-opsin expression, hypothyroidism caused a significant decrease (P < 0.01) only in wild-type animals. When TR beta 1 and -beta 2 were T3-binding defective, the pattern of opsin expression was similar to TR beta ablation, showing increased S- opsin expression in the dorsal retina and no expression of M-opsin in the entire retina. In an unexpected finding, immunostaining for both opsins was detected when both subtypes of TR beta were mutated in the helix 12 AF-2 domain. CONCLUSIONS. The results show, for the first time, that the expression of S- and M-opsin is dependent on normal thyroid hormone levels during development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Evaluating the activity of the complement system under conditions of altered thyroid hormone levels might help elucidate the role of complement in triggering autoimmune processes. Here, we investigated alternative pathway (AP) activity in male Wistar rats (180 ± 10 g) after altering their thyroid hormone levels by treatment with triiodothyronine (T3), propylthiouracil (PTU) or thyroidectomy. T3 and thyroxine (T4) levels were determined by chemiluminescence assays. Hemolytic assays were performed to evaluate the lytic activity of the AP. Factor B activity was evaluated using factor B-deficient serum. An anti-human factor B antibody was used to measure factor B levels in serum by radial immunodiffusion. T3 measurements in thyroidectomized animals or animals treated with PTU demonstrated a significant reduction in hormone levels compared to control. The results showed a reduction in AP lytic activity in rats treated with increasing amounts of T3 (1, 10, or 50 µg). Factor B activity was also decreased in the sera of hyperthyroid rats treated with 1 to 50 µg T3. Additionally, treating rats with 25 µg T3 significantly increased factor B levels in their sera (P < 0.01). In contrast, increased factor B concentration and activity (32%) were observed in hypothyroid rats. We conclude that alterations in thyroid hormone levels affect the activity of the AP and factor B, which may in turn affect the roles of AP and factor B in antibody production.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hyperthyroidism promotes cardiac hypertrophy and the Angiotensin type 1 receptor (AT1R) has been demonstrated to mediate part of this response. Recent studies have uncovered a potentially important role for the microRNAs (miRNAs) in the control of diverse aspects of cardiac function. Then, the objective of the present study was to investigate the action promoted by hyperthyroidism on β-MHC/miR-208b expression and on α-MHC/miR-208a expression, as well as the possible contribution of the AT1R in this event. The findings of this study confirmed that AT1R is a key mediator of the cardiac hypertrophy induced by hyperthyroidism. Additionally, we demonstrated that like β-MHC, miR-208b was down-regulated in the hyperthyroid group. Similarly, like the expression of its host gene, α-MHC, miR-208a expression was up-regulated in response to hyperthyroidism. Finally, our data suggest for the first time that AT1R mediates the hyperthyroidism-induced increase on cardiac miRNA-208a/α-MHC levels, while does not influence on the reduction of miRNA-208b/β-MHC levels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although it is well known that the thyroid hormone (T3) is an important positive regulator of cardiac function over a short term and that it also promotes deleterious effects over a long term, the molecular mechanisms for such effects are not yet well understood. Because most alterations in cardiac function are associated with changes in sarcomeric machinery, the present work was undertaken to find novel sarcomeric hot spots driven by T3 in the heart. A microarray analysis indicated that the M-band is a major hot spot, and the structural sarcomeric gene coding for the M-protein is severely down-regulated by T3. Real-time quantitative PCR-based measurements confirmed that T3 (1, 5, 50, and 100 physiological doses for 2 days) sharply decreased the M-protein gene and protein expression in vivo in a dose-dependent manner. Furthermore, the M-protein gene expression was elevated 3.4-fold in hypothyroid rats. Accordingly, T3 was able to rapidly and strongly reduce the M-protein gene expression in neonatal cardiomyocytes. Deletions at the M-protein promoter and bioinformatics approach suggested an area responsive to T3, which was confirmed by chromatin immunoprecipitation assay. Functional assays in cultured neonatal cardiomyocytes revealed that depletion of M-protein (by small interfering RNA) drives a severe decrease in speed of contraction. Interestingly, mRNA and protein levels of other M-band components, myomesin and embryonic-heart myomesin, were not altered by T3. We concluded that the M-protein expression is strongly and rapidly repressed by T3 in cardiomyocytes, which represents an important aspect for the basis of T3-dependent sarcomeric deleterious effects in the heart.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The majority of mutations that cause isolated GH deficiency type II (IGHD II) affect splicing of GH-1 transcripts and produce a dominant-negative GH isoform lacking exon 3 resulting in a 17.5-kDa isoform, which further leads to disruption of the GH secretory pathway. A clinical variability in the severity of the IGHD II phenotype depending on the GH-1 gene alteration has been reported, and in vitro and transgenic animal data suggest that the onset and severity of the phenotype relates to the proportion of 17.5-kDa produced. The removal of GH in IGHD creates a positive feedback loop driving more GH expression, which may itself increase 17.5-kDa isoform productions from alternate splice sites in the mutated GH-1 allele. In this study, we aimed to test this idea by comparing the impact of stimulated expression by glucocorticoids on the production of different GH isoforms from wild-type (wt) and mutant GH-1 genes, relying on the glucocorticoid regulatory element within intron 1 in the GH-1 gene. AtT-20 cells were transfected with wt-GH or mutated GH-1 variants (5'IVS-3 + 2-bp T->C; 5'IVS-3 + 6 bp T->C; ISEm1: IVS-3 + 28 G->A) known to cause clinical IGHD II of varying severity. Cells were stimulated with 1 and 10 mum dexamethasone (DEX) for 24 h, after which the relative amounts of GH-1 splice variants were determined by semiquantitative and quantitative (TaqMan) RT-PCR. In the absence of DEX, only around 1% wt-GH-1 transcripts were the 17.5-kDa isoform, whereas the three mutant GH-1 variants produced 29, 39, and 78% of the 17.5-kDa isoform. DEX stimulated total GH-1 gene transcription from all constructs. Notably, however, DEX increased the amount of 17.5-kDa GH isoform relative to the 22- and 20-kDa isoforms produced from the mutated GH-1 variants, but not from wt-GH-1. This DEX-induced enhancement of 17.5-kDa GH isoform production, up to 100% in the most severe case, was completely blocked by the addition of RU486. In other studies, we measured cell proliferation rates, annexin V staining, and DNA fragmentation in cells transfected with the same GH-1 constructs. The results showed that that the 5'IVS-3 + 2-bp GH-1 gene mutation had a more severe impact on those measures than the splice site mutations within 5'IVS-3 + 6 bp or ISE +28, in line with the clinical severity observed with these mutations. Our findings that the proportion of 17.5-kDa produced from mutant GH-1 alleles increases with increased drive for gene expression may help to explain the variable onset progression, and severity observed in IGHD II.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study the regulation of GH-receptor gene (GHR/GHBP) transcription by different concentrations of GH (0, 12.5, 25, 50, 150, 500 ng/ml) with and without variable TSH concentrations (0.5, 2, 20 mU/l) in primary human thyroid cells cultured in serum-free hormonally-defined medium was studied. The incubation time was 6 h and GHR/GHBP mRNA expression was quantitatively assessed by using PCR amplification at hourly intervals. Correlating with the GH-concentrations added a constant and significant increase of GHR/GHBP gene transcription was found. After the addition of 12.5 ng/ml GH, GHR/GHBP mRNA concentration remained constant over the incubation period of 6 h but in comparison with the experiments where no GH was added there was a significant change of GHR/GHBP mRNA expression. Following the addition of 25 ng/ml GH a slight but further increase of GHR/GHBP transcription products was seen which increased even more in the experiments where higher GH concentrations were used. These data focusing on GHR/GHBP gene transcription derived from cDNA synthesis and quantitative PCR amplification were confirmed by run-on experiments. Furthermore, cycloheximide did not affect these changes supporting the notion that GH stimulates GHR/GHBP gene transcription directly. In a second set of experiments, in combination with variable TSH levels, identical GH concentrations were used and no difference in either GHR/GHBP mRNA levels or in transcription rate (run-on experiments) could be found. In conclusion, we report data showing that primary thyroid cells express functional GH-receptors in which GH has a direct and dose dependent effect on the GHR/GHBP gene transcription. Furthermore, TSH does not a have a major impact on GHR/GHBP gene regulation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nodular thyroid disease is a common problem. We present clinical guidelines for the management of patients with thyroid nodules, multinodular goiters and thyroid cysts for use by primary physicians. In the initial evaluation ultrasonography of the thyroid and fine-needle aspiration biopsy (FNAB) is recommended. FNAB has become the cornerstone in the evaluation of solitary thyroid nodules, cysts and dominant nodules within multinodular goiters. If the procedure is done properly, it should have a false-negative rate of less than 5% and a false-positive rate of not more than 1%. Thyroid radionuclide scans are less frequently used in the initial evaluation of a nodular goiter. Surgery is the primary therapy for patients with nodular thyroid disease. Other available treatment options are radioiodine and TSH-suppression with thyroxine. The main indications for surgery in euthyroid patients with thyroid nodule or with nontoxic multinodular goiter are recently documented or suspected malignancy, compression of the trachea and esophagus, significant growth of the nodule, recurrence of a cyst after aspiration, neck discomfort and cosmetic concern.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To investigate the regulation of the human fatty acid synthase gene by the thyroid hormone triiodothyronine, various constructs of the human fatty acid synthase promoter and the luciferase reporter gene were transfected in combination with plasmids expressing the thyroid hormone and the retinoid X receptors in HepG2 cells. The reporter gene was activated 25-fold by the thyroid hormone in the presence of the thyroid hormone receptor. When both the thyroid hormone and the retinoid X receptors were expressed in HepG2 cells, there was about a 100-fold increase in reporter gene expression. 5′-Deletion analysis disclosed two thyroid hormone response elements, TRE1 (nucleotides −870 to −650) and TRE2 (nucleotides −272 to −40), in the human fatty acid synthase promoter. The presence of thyroid hormone response elements in these two regions of the promoter was confirmed by cloning various fragments of these two regions in the minimal thymidine kinase promoter−luciferase reporter gene plasmid construct and determining reporter gene expression. The results of this cloning procedure and those of electrophoretic mobility shift assays indicated that the sequence GGGTTAcgtcCGGTCA (nucleotides −716 to −731) represents TRE1 and that the sequence GGGTCC (nucleotides −117 to −112) represents TRE2. The sequence of TRE1 is very similar to the consensus sequence of the thyroid hormone response element, whereas the sequence of TRE2 contains only a half-site of the thyroid hormone response element consensus motif because it lacks the direct repeat. The sequences on either side of TRE2 seem to influence its response to the thyroid hormone and retinoid X receptors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thyroid hormone is a critical mediator of central nervous system (CNS) development, acting through nuclear receptors to modulate the expression of specific genes. Transcription of the rat hairless (hr) gene is highly up-regulated by thyroid hormone in the developing CNS; we show here that hr is directly induced by thyroid hormone. By identifying proteins that interact with the hr gene product (Hr), we find that Hr interacts directly and specifically with thyroid hormone receptor (TR)—the same protein that regulates its expression. Unlike previously described receptor-interacting factors, Hr associates with TR and not with retinoic acid receptors (RAR, RXR). Hr can act as a transcriptional repressor, suggesting that its interaction with TR is part of a novel autoregulatory mechanism.