927 resultados para THERMAL EFFECTS
Resumo:
A systematic study was undertaken on the combustion and thermal decomposition of pelletized Ammonium Perchlorate (AP) to investigate the effects of pelletizing pressure and dwell time. At constant pressure, increasing the dwell time results in an increase in the burning rate up to a maximum and thereafter decreases it. The dwell time required for the pellets to have maximum burning rate is a function of pressure. The maximum burning rate is the same for all the pressures used and is also unaffected by increasing, to the range 90-250 μ, the particle size of AP used. In order to explain the occurrence of a maximum in burning rate, pellets were examined for their thermal sensitivities, physical nature and the changes occurring during pelletization with dwell time and pressure. The variations are argued in terms of increasing density, formation of defects such as dislocations leading to an increase in the number of reactive sites, followed by their partial annihilation at longer dwell times due to flow of material during pelletization.
Resumo:
This project reviewed international research conducted on the possible role of plants in alleviating high temperatures in our living spaces. The literature review served to identify the work that has already been carried out in the area and to highlight the gaps to be filled by experimental research. A pilot study then investigated the thermal properties of six of the most common landscaping materials. This project clearly shows that plants can play a significant role in modifying the thermal conditions of urban environments. Tall trees can shade nearby buildings and allow for reductions in cooling costs. In addition to basic shading, the dispersal of heat via the plant’s natural transpiration stream has long been recognised as an important component of the urban energy balance. It has been shown that urban temperatures can be up to 7°C higher than nearby rural areas, illustrating the impact of plants on their environment. These benefits argue against the idea of removing plants from landscapes in order to save on water in times of drought. Similarly, the idea of switching to artificial turf is questionable, since artificial turf still requires watering and can reach temperatures that far exceed the safe range for players. While vegetation offers evaporative cooling, non-vegetative, impervious surfaces such as concrete do not, and can therefore cause greater surface and soil temperatures. In addition, the higher temperatures associated with these impervious surfaces can negatively affect the growth of plants in surrounding areas. Permeable surfaces, such as mulches, have better insulating properties and can prevent excessive heating of the soil. However, they can also lead to an increase in reflected longwave radiation, causing the leaves of plants to close their water-conducting pores and reducing the beneficial cooling effects of transpiration. The results show that the energy balance of our surroundings is complicated and that all components of a landscape will have an impact on thermal conditions.
Resumo:
It is shown that the effect of adsorption of inert molecules on electrode reaction rates is completely accounted for, by introducing into the rate equation, adsorption-induced changes in both the effective electrode area as well as in the electrostatic potential at the reaction site with an additional term for the noncoulombic interaction between the reactant and the adsorbate. The electrostatic potential at the reaction site due to the adsorbed layer is calculated using a model of discretely-distributed molecules in parallel orientation when adsorbed on the electrode with an allowance for thermal agitation. The resulting expression, which is valid for the limiting case of low coverages, is used to predict the types of molecular surfactants that are most likely to be useful for acceleration and inhibition of electrode reactions.
Resumo:
Physical entrapment was used as an approach to achieve thermal stabilization of enzymes. The ti values for the thermoinactivation of glucose oxidase and glucoamylase were increased several-fold by their entrapment in polyacrylamide gels. In polyacrylate gels the individual enzymes behaved differently, probably owing to microenvironmental effects arising by the polyelectrolyte nature of the carrier.
Resumo:
- Introduction Heat-based training (HT) is becoming increasingly popular as a means of inducing acclimation before athletic competition in hot conditions and/or to augment the training impulse beyond that achieved in thermo-neutral conditions. Importantly, current understanding of the effects of HT on regenerative processes such as sleep and the interactions with common recovery interventions remain unknown. This study aimed to examine sleep characteristics during five consecutive days of training in the heat with the inclusion of cold-water immersion (CWI) compared to baseline sleep patterns. - Methods Thirty recreationally-trained males completed HT in 32 ± 1 °C and 60% rh for five consecutive days. Conditions included: 1) 90 min cycling at 40 % power at VO2max (Pmax) (90CONT; n = 10); 90 min cycling at 40 % Pmax with a 20 min CWI (14 ± 1 °C; 90CWI; n = 10); and 30 min cycling alternating between 40 and 70 % Pmax every 3 min, with no recovery intervention (30HIT; n = 10). Sleep quality and quantity was assessed during HT and four nights of 'baseline' sleep (BASE). Actigraphy provided measures of time in and out of bed, sleep latency, efficiency, total time in bed and total time asleep, wake after sleep onset, number of awakenings, and wakening duration. Subjective ratings of sleep were also recorded using a 1-5 Likert scale. Repeated measures analysis of variance (ANOVA) was completed to determine effect of time and condition on sleep quality and quantity. Cohen's d effect sizes were also applied to determine magnitude and trends in the data. - Results Sleep latency, efficiency, total time in bed and number of awakenings were not significantly different between BASE and HT (P > 0.05). However, total time asleep was significantly reduced (P = 0.01; d = 1.46) and the duration periods of wakefulness after sleep onset was significantly greater during HT compared with BASE (P = 0.001; d = 1.14). Comparison between training groups showed latency was significantly higher for the 30HIT group compared to 90CONT (P = 0.02; d = 1.33). Nevertheless, there were no differences between training groups for sleep efficiency, total time in bed or asleep, wake after sleep onset, number of awakenings or awake duration (P > 0.05). Further, cold-water immersion recovery had no significant effect on sleep characteristics (P > 0.05). - Discussion Sleep plays an important role in athletic recovery and has previously been demonstrated to be influenced by both exercise training and thermal strain. Present data highlight the effect of HT on reduced sleep quality, specifically reducing total time asleep due to longer duration awake during awakenings after sleep onset. Importantly, although cold water recovery accelerates the removal of thermal load, this intervention did not blunt the negative effects of HT on sleep characteristics. - Conclusion Training in hot conditions may reduce both sleep quantity and quality and should be taken into consideration when administering this training intervention in the field.
Resumo:
This work presents a numerical analysis of simultaneous mould filling and phase change for solidification in a two-dimensional rectangular cavity. The role of residual flow strength and temperature gradients within the solidifying domain, caused by the filling process, on the evolution of solidification interface are investigated. An implicit volume of fluid (VOF)-based algorithm has been employed for simulating the free surface flows during the filling process, while the model for solidification is based on a fixed-grid enthalpy-based control volume approach. Solidification modeling is coupled with VOF through User Defined Functions developed in the commercial computational fluid dynamics (CFD) code FLUENT 6.3.26. Comparison between results of the conventional analysis without filling effect and those of the present analysis shows that the residual flow resulting from the filling process significantly influences the progress of the solidification interface. A parametric study is also performed with variables such as cooling rate, filling velocity and filling configuration, in order to investigate the coupled effects of the buoyancy-driven flow and the residual flow on the solidification behavior.
Resumo:
Considered to be the next generation of heat transfer fluids, nanofluids have been receiving a growing amount of attention in the past decade despite the controversy and inconsistencies that have been reported. Nanofluids have great potential in a wide range of fields, particularly for solar thermal applications. This paper presents a comprehensive review of the literature on the enhancements in thermophysical and rheological properties resulting from experimental works conducted on molten salt nanofluids that are used in solar thermal energy systems. It was found that an increase in specific heat of 10–30% was achieved for most nanofluids and appeared independent of particle size and to an extent mass concentration. The specific heat increase was attributed to the formation of nanostructures at the solid–liquid interface and it was also noted that the aggregation of nanoparticles has detrimental effects on the specific heat increase. Thermal conductivity was also found to increase, though less consistently, ranging from 3% to 35%. Viscosity was seen to increase with the addition of nanoparticles and is dependent on the amount of aggregation of the particles. An in-depth micro level analysis of the mechanisms behind the thermophysical property changes is presented in this paper. In addition, possible trends are discussed relating to current theorised mechanisms in an attempt to explain the behaviour of molten salt nanofluids.
Resumo:
The importance of lying behavior to dairy cows and the feasible definition of lying has attracted many studies on the subject. Cattle show both behavioral and physiological stress responses when subjected to thwarting of their lying behavior. If cows are unable to lie down they later compensate for lost lying time when possible. Environmental factors such as housing and bedding systems have been noted to affect the time spent lying, but there is usually large variation in lying time between individuals. Internal factors such as the reproductive stage, age and health of cows affect their lying time and can cause variation. However, the effect of higher milk production on behavior has not previously been illuminated. The objective of this study was to provide data applicable for the improvement of resting conditions of cows. The preference of stall surface material, differences in normal behavior per unit time and various health measures were observed. The aim was to evaluate lying behavior and cow comfort on different stall bedding materials. In addition, the effect of milk yield on behavior was examined in a tie stall experiment. The preferences for surface materials were investigated in 5 experiments using 3 surface materials with bedding manipulations. According to the results, the cows preferred abundant straw bedding and soft rubber mats. However, they showed an aversion to sand bedding. Some individuals even refused to use stalls with sand when no organic bedding material was present. However, this study was unable to determine the reason for the avoidance, as neither the sand particle size nor thermal properties appeared critical. However, previous exposure to particular surface materials increased the preference for them. The amount of straw bedding was found to be an important factor affecting the preferences for stalls, and the lying time in stalls increased when the flooring softness was improved by applying straw or by installing elastic mats. Despite sand being the least preferred flooring material in preference tests, the health of legs improved during exposure to sand-floored stalls. Moreover cows using sand were cleaner than those that used straw stalls. Thus, sand bedding entailed some health benefits despite the contradictory results of preference tests, which more strongly reflected the perceptions of individual animals. Milk yield was observed to affect behavior by reducing the lying time, possibly due to factors other than longer duration of eating. High yielding cows seemed to intensify their lying bouts, as they were observed to lie with the neck muscles relaxed sooner after lying down than lower yielding cows. In conclusion, cows were found to prefer softer stall surface materials and organic bedding material. In addition, the lying time was reduced by a high milk yield, although the lying time seemed to be important for resting. Cows might differ in the needs for their lying environment. The management of dairy cows should eliminate any unnecessary prevention of lying, as even in tie-stalls high yielding cows seem to be affected by time constraints. Adding fresh bedding material to stalls increases the comfort of any stall flooring material.
Resumo:
In this study, biodegradable blend of Poly (Ethylene-co-Vinyl Acetate) (EVA) and Ethyl Cellulose (EC) were prepared. Ethylene vinyl alcohol (EVOH) copolymer was used as an interfacial compatibilizer to enhance adhesion between EVA and EC. The melt blended compatibilized biocomposites were examined for mechanical and thermal properties as per the ASTM standards. It has been found that the EC has a reinforcing effect on EVA leading to enhanced tensile strength and also impart biodegradability. Thus, a high loading of 50% EC could be added without compromising Much on the mechanical properties. Analysis of the tensile data using predictive theories showed an enhanced interaction of the dispersed phase (EC) and the matrix (EVA). The compatibilizing effects of EVOH on these blends were confirmed by the significant improvement in the mechanical properties comparable with neat EVA as also observed by SEM microscopy. The TGA thermograms exhibits two-stage degradation and as EC content increases, the onset temperature for thermal degradation reduces. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 116: 1044-1056, 2010
Resumo:
The reversible chemical reaction of Ca(OH)2/CaO appears to be attractive for storage of solar thermal energy, in view of the nonpolluting and nontoxic nature of the reactants. This paper presents some data on thermal decomposition of calcium hydroxide pellets along with its additives of aluminum, aluminum hydroxide, zinc, and copper. The addition of aluminum and zinc powder enhanced the rate of decomposition considerably at 450°C, but copper had no effect. Considerations on the effect of additives are also discussed in some detail, though their effects are not established with certainty. There is some evidence that heat transfer into the pellet, and the number of potential nucleation sites due to thermal stresses, influence the kinetics and mechanism of decomposition.
Resumo:
The problem of homogeneous solid propellant combustion instability is studied with a one-dimensional flame model, including the effects of gas-phase thermal inertia and nonlinearity. Computational results presented in this paper show nonlinear instabilities inherent in the equations, due to which periodic burning is found even under steady ambient conditions such as pressure. The stability boundary is obtained in terms of Denison-Baum parameters. It is found that inclusion of gas-phase thermal inertia stabilizes the combustion. Also, the effect of a distributed heat release in the gas phase, compared to the flame sheet model, is to destabilize the burning. Direct calculations for finite amplitude pressure disturbances show that two distinct resonant modes exist, the first one near the natural frequency as obtained from intrinsic instability analysis and a second mode occurring at a much higher driving frequency. It is found that er rn in the low frequency region, the response of the propellant is significantly affected by the specific type of gas-phase chemical heat-release model employed. Examination of frequency response function reveals that the role of gas-phase thermal inertia is to stabilize the burning near the first resonant mode. Calculations made for different amplitudes of driving pressure show that the mean burning rate decreases with increasing amplitude. Also, with an increase in the driving amplitude, higher harmonics are generated in the burning rate.
Resumo:
Poly(ethylene-co-vinyl acetate) (EVA) films were irradiated with a 1.2MeV electron beam at varied doses over the range 0-270kGy in order to investigate the modifications induced in its optical, electrical and thermal properties. It was observed that optical band gap and activation energy of EVA films decreased upon electron irradiation, whereas the transition dipole moment, oscillator strength and number of carbon atoms per cluster were found to increase upon irradiation. Further, the dielectric constant, the dielectric loss, and the ac conductivity of EVA films were found to increase with an increase in the dose of electron radiation. The result further showed that the thermal stability of EVA film samples increased upon electron irradiation.
Resumo:
Exposure with above band gap light and thermal annealing at a temperature near to glass transition temperature, of thermally evaporated amorphous (As2S3)(0.87)Sb-0.13 thin films of 1 mu m thickness, were found to be accompanied by structural effects, which in turn, lead to changes in the optical properties. The optical properties of thin films induced by illumination and annealing were studied by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Photo darkening or photo bleaching was observed in the film depending upon the conditions of the light exposure or annealing. These changes of the optical properties are assigned to the change of homopolar bond densities. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A precise X-ray investigation is carried out to probe the lowest-order anharmonic contribution of the atomic potential of the germanium atom. A total number of 1052 reflections (h + k + l = 4n and 4n +/- 1) are precisely measured at room temperature using a spherical single crystal of germanium and using a Nonius CAD-4 X-ray diffractometer with crystal monochromatized MoKalpha radiation. A least-square refinement program is used to refine the harmonic and anharmonic thermal parameters of the crystal. The refinement gives beta(Ge) = (-0.749 +/- 1.79) x 10-(16) J nm-3 with B(Ge) = (0.528 +/- 0.004) x 10(-2) nm2. The reliability index (R) amounts to 1.71% for germanium.
Resumo:
We investigate the structural, magnetic, and specific heat behavior of the hexagonal manganite Dy0.5Y0.5MnO3 in order to understand the effect of dilution of Dy magnetism with nonmagnetic yttrium. In this compound, the triangular Mn lattice orders antiferromagnetic at T-N(Mn) approximate to 68 K observed experimentally in the derivative of magnetic susceptibility as well as in specific heat. In addition, a low-temperature peak at T-N(Dy) similar to 3 K is observed in specific heat which is attributed to rare earth order. The T-N(Mn) increases by 9 K compared to that of hexagonal (h) DyMnO3 while T-N(Dy) is unchanged. A change in slope of thermal evolution of lattice parameters is observed to occur at temperature close to T-N(Mn). This hints at strong magnetoelastic coupling in this geometric multiferroic. In magnetization measurements, steplike features are observed when the magnetic field is applied along the c axis which shift to higher fields with temperature and vanish completely above 40 K. The presence of different magnetic phases at low temperature and strong magnetoelastic effects can lead to such field-induced transitions which resemble metamagnetic transitions. This indicates the possibility of strong field-induced effects in dielectric properties of this material, which is unexplored to date.