953 resultados para Synthetic wavelength
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aim: To determine the immunoreactivity of synthetic Cryptococcus-derived peptides. Materials & methods: A total of 63 B-cell epitopes from previously identified Cryptococcus gattii immunoreactive proteins were synthesized and evaluated as antigens in ELISAs. The peptides were first evaluated for their ability to react against sera from immunocompetent subjects carrying cryptococcal meningitis. Peptides that yielded high sensitivity and specificity in the first test were then retested with sera from individuals with other fungal pathologies for cross-reactivity determination. Results: Six of 63 synthetic peptides were recognized by antibodies in immunoassays, with a specificity of 100%, sensitivity of 78% and low cross-reactivity. Conclusion: We successfully determined the immunoreactivity of selected synthetic peptides of C. gattii derived proteins.
Resumo:
Pós-graduação em Ciências Farmacêuticas - FCFAR
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The steady-state average run length is used to measure the performance of the recently proposed synthetic double sampling (X) over bar chart (synthetic DS chart). The overall performance of the DS X chart in signaling process mean shifts of different magnitudes does not improve when it is integrated with the conforming run length chart, except when the integrated charts are designed to offer very high protection against false alarms, and the use of large samples is prohibitive. The synthetic chart signals when a second point falls beyond the control limits, no matter whether one of them falls above the centerline and the other falls below it; with the side-sensitive feature, the synthetic chart does not signal when they fall on opposite sides of the centerline. We also investigated the steady-state average run length of the side-sensitive synthetic DS X chart. With the side-sensitive feature, the overall performance of the synthetic DS X chart improves, but not enough to outperform the non-synthetic DS X chart. Copyright (C) 2014 John Wiley &Sons, Ltd.
Resumo:
Synthetic-heterodyne demodulation is a useful technique for dynamic displacement and velocity detection in interferometric sensors, as it can provide an output signal that is immune to interferometric drift. With the advent of cost-effective, high-speed real-time signal-processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. In synthetic heterodyne, to obtain the actual dynamic displacement or vibration of the object under test requires knowledge of the interferometer visibility and also the argument of two Bessel functions. In this paper, a method is described for determining the former and setting the Bessel function argument to a set value, which ensures maximum sensitivity. Conventional synthetic-heterodyne demodulation requires the use of two in-phase local oscillators; however, the relative phase of these oscillators relative to the interferometric signal is unknown. It is shown that, by using two additional quadrature local oscillators, a demodulated signal can be obtained that is independent of this phase difference. The experimental interferometer is aMichelson configuration using a visible single-mode laser, whose current is sinusoidally modulated at a frequency of 20 kHz. The detected interferometer output is acquired using a 250 kHz analog-to-digital converter and processed in real time. The system is used to measure the displacement sensitivity frequency response and linearity of a piezoelectric mirror shifter over a range of 500 Hz to 10 kHz. The experimental results show good agreement with two data-obtained independent techniques: the signal coincidence and denominated n-commuted Pernick method.
Resumo:
Objectives: The aim of this study is to report on the treatment of mandibular Class II furcation defects with enamel matrix protein derivative (EMD) combined with a beta TCP/HA (beta-tricalcium phosphate/hydroxyapatite) alloplastic material. Method and Materials: Thirteen patients were selected. All patients were nonsmokers, systemically healthy, and diagnosed with chronic periodontitis; had not taken medications known to interfere with periodontal tissue health and healing; presented one Class II mandibular furcation defect with horizontal probing equal to or greater than 4 mm at buccal site. The clinical parameters evaluated were probing depth (PD), relative gingival margin position (RGMP), relative vertical clinical attachment level (RVCAL), and relative horizontal clinical attachment level (RHCAL). A paired Student t test was used to detect differences between the baseline and 6-month measurements, with the level of significance of .05. Results: After 6 months, the treatment produced a statistically significant reduction in PD and a significant gain in RVCAL and RHCAL, but no observable change in RGMP. RVCAL ranged from 13.77 (+/- 1.31) at baseline to 12.15 (+/- 1.29) after 6 months, with a mean change of -1.62 +/- 1.00 mm (P<.05). RHCAL ranged from 5.54 (+/- 0.75) to 2.92 (+/- 0.92), with a mean change of -2.62 +/- 0.63 mm (P<.05). After 6 months, 76.92% of the patients improved their diagnosis to Class I furcation defects while 23.08% remained as Class II. Conclusion: The present study has shown that positive clinical results may be expected from the combined treatment of Class II furcation defects with EMD and beta TCP/HA, especially considering the gain of horizontal attachment level. Despite this result, controlled clinical studies are needed to confirm our outcomes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Results of photoluminescence measurements for natural and synthetic alexandrite (BeAl2O4:Cr3+) are presented, where the samples are excited by the 488 nm line of an Ar+ laser, at different temperatures. The main issue is the analysis of the Cr3+ transition in the chrysoberyl matrix (BeAl2O4), with major technological application as active media for laser action. Results indicate anomalous behavior of Cr3+ transition depending on the measurement temperature. A simple model to explain the phenomena is suggested.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A transparent (wide-area) wavelength-routed optical network may be constructed by using wavelength cross-connect switches connected together by fiber to form an arbitrary mesh structure. The network is accessed through electronic stations that are attached to some of these cross-connects. These wavelength cross-connect switches have the property that they may configure themselves into unspecified states. Each input port of a switch is always connected to some output port of the switch whether or not such a connection is required for the purpose of information transfer. Due to the presence of these unspecified states, there exists the possibility of setting up unintended alloptical cycles in the network (viz., a loop with no terminating electronics in it). If such a cycle contains amplifiers [e.g., Erbium- Doped Fiber Amplifiers (EDFA’s)], there exists the possibility that the net loop gain is greater than the net loop loss. The amplified spontaneous emission (ASE) noise from amplifiers can build up in such a feedback loop to saturate the amplifiers and result in oscillations of the ASE noise in the loop. Such all-optical cycles as defined above (and hereafter referred to as “white” cycles) must be eliminated from an optical network in order for the network to perform any useful operation. Furthermore, for the realistic case in which the wavelength cross-connects result in signal crosstalk, there is a possibility of having closed cycles with oscillating crosstalk signals. We examine algorithms that set up new transparent optical connections upon request while avoiding the creation of such cycles in the network. These algorithms attempt to find a route for a connection and then (in a post-processing fashion) configure switches such that white cycles that might get created would automatically get eliminated. In addition, our call-set-up algorithms can avoid the possibility of crosstalk cycles.
Resumo:
Routing and wavelength assignment (RWA) is an important problem that arises in wavelength division multiplexed (WDM) optical networks. Previous studies have solved many variations of this problem under the assumption of perfect conditions regarding the power of a signal. In this paper, we investigate this problem while allowing for degradation of routed signals by components such as taps, multiplexers, and fiber links. We assume that optical amplifiers are preplaced. We investigate the problem of routing the maximum number of connections while maintaining proper power levels. The problem is formulated as a mixed-integer nonlinear program and two-phase hybrid solution approaches employing two different heuristics are developed
Resumo:
Consider a wavelength-routed optical network in which nodes, i.e., multiwave length cross-connect switches (XCSs), are connected by fiber to form an arbitrary physical topology. A new call is admitted into the network if an all-optical lightpath can be established between the call’s source and destination nodes. Wavelength converters are assumed absent in this work.
Resumo:
A wavelength-routed optical network consists of multi-wavelength crossconnect switches (XCSs) which are interconnected by optical fibers. Some (or all) crossconnects, referred to as nodes in this paper, are also attached to access stations where data from several end-users could be multiplexed onto a single wavelength division multiplexed (WDM) channel. An access station provides optical-to-electronic (O/E) conversion and wice wersa to interface the optical network with conventional electronic equipment. The access station, at an intermediate node, may also be used (as in this study) for signal regenerution on a lightpath. A new call is admitted into the network if a lightpath (a set of free wavelengths along a given route from source to destination) can be established between the call’s source and destination stations. Depending on the number of all-optical fragments in a single lightpath, three different approaches may be employed to operate such a network. These approaches are: transparency, opacity, and translucency (to be explained below). Our study concentrates on evaluating the relative merits of these three approaches in a sample network environment.