829 resultados para Subwavelength plasmonic grating


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and functional information encoded in DNA combined with unique properties of nanomaterials could be of use for the construction of novel biocomputational circuits and intelligent biomedical nanodevices. However, at present their practical applications are still limited by either low reproducibility of fabrication, modest sensitivity, or complicated handling procedures. Here, we demonstrate the construction of label-free and switchable molecular logic gates (AND, INHIBIT, and OR) that use specific conformation modulation of a guanine- and thymine-rich DNA, while the optical readout is enabled by the tunable metamaterials which serve as a substrate for surface enhanced Raman spectroscopy (MetaSERS). Our MetaSERS-based DNA logic is simple to operate, highly reproducible, and can be stimulated by ultra-low concentration of the external inputs, enabling an extremely sensitive detection of mercury ions down to 2×10-4 ppb, which is four orders of magnitude lower than the exposure limit allowed by United States Environmental Protection Agency

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ultrathin layer of metasurface that almost completely annihilates the reflection of light (>99.5%) over a wide range of incident angles (>80°) is experimentally demonstrated. Such zero-reflectance metafilms exhibit optimal performance for plasmonic sensing, since their sensitivity to changes of local refractive index is far superior to films of nonzero reflectance. Since both main detection mechanisms tracking intensity changes and wavelength shifts are improved, zero-reflectance metafilms are optimal for localized surface plasmon resonance molecular sensing. Such nanostructures have significant opportunities in many areas, including enhanced light harvesting as well as in developing high-performance molecular sensors for a wide range of chemical and biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A trapezoidal strip grating surface that eliminates specular reflections almost over the entire X -band frequency range for TM polarization is reported This new grating structure overcomes the bandwidth limitation of conventional rectangular strip grating surfaces

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transient interaction between a refraction index grating and light beams during simultaneous writing and thermal fixing of a photorefractive hologram is investigated. With a diffusion- and photovoltaic-dominated carrier transport mechanism and carrier thermal activation (temperature dependent) considered in Fe:LiNbO3 crystal, from the standpoint of field-material coupling, the theoretical thermal fixing time and the space-charge field buildup, spatial distribution, and temperature dependence are given numerically by combining the band transport model with mobile ions with the coupled-wave equation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metallic glass alloy Metglas 2826 MB based amorphous magnetic thin films were fabricated by the thermal evaporation technique. Transmission electron micrographs and electron diffraction pattern showed the amorphous nature of the films. Composition of the films was analyzed employing x-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy techniques. The film was integrated to a long period fibre grating. It was observed that the resonance wavelength of the fibre grating decreased with an increase in the magnetic field. Change in the resonance wavelength was minimal at higher magnetic fields. Field dependent magnetostriction values revealed the potential application of these films in magnetostrictive sensor devices

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metallic glass alloy Metglas 2826 MB based amorphous magnetic thin films were fabricated by the thermal evaporation technique. Transmission electron micrographs and electron diffraction pattern showed the amorphous nature of the films. Composition of the films was analyzed employing X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy techniques. The film was integrated to a long period fibre grating. It was observed that the resonance wavelength of the fibre grating decreased with an increase in the magnetic field. Change in the resonance wavelength was minimal at higher magnetic fields. Field dependent magnetostriction values revealed the potential application of these films in magnetostrictive sensor devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The- classic: experiment of Heinrich Hertz verified the theoretical predict him of Maxwell that kxnfli radio and light waves are physical phenomena governed by the same physical laws. This has started a.rnnJ era of interest in interaction of electromagnetic energy with matter. The scattering of electromagnetic waves from a target is cleverly utilized im1 RADAR. This electronic system used tx> detect and locate objects under unfavourable conditions or obscuration that would render the unaided eye useless. It also provides a means for measuring precisely the range, or distance of an object and the speed of a moving object. when an obstacle is illuminated by electromagnetic waves, energy is dispersed in all directions. The dispersed energy depends on the size, shape and composition of the obstacle and frequency and nature of the incident wave. This distribution of energy’ is known as ‘scattering’ and the obstacle as ‘scatterer’ or 'target'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

International School of Photonics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The question of how shape is represented is of central interest to understanding visual processing in cortex. While tuning properties of the cells in early part of the ventral visual stream, thought to be responsible for object recognition in the primate, are comparatively well understood, several different theories have been proposed regarding tuning in higher visual areas, such as V4. We used the model of object recognition in cortex presented by Riesenhuber and Poggio (1999), where more complex shape tuning in higher layers is the result of combining afferent inputs tuned to simpler features, and compared the tuning properties of model units in intermediate layers to those of V4 neurons from the literature. In particular, we investigated the issue of shape representation in visual area V1 and V4 using oriented bars and various types of gratings (polar, hyperbolic, and Cartesian), as used in several physiology experiments. Our computational model was able to reproduce several physiological findings, such as the broadening distribution of the orientation bandwidths and the emergence of a bias toward non-Cartesian stimuli. Interestingly, the simulation results suggest that some V4 neurons receive input from afferents with spatially separated receptive fields, leading to experimentally testable predictions. However, the simulations also show that the stimulus set of Cartesian and non-Cartesian gratings is not sufficiently complex to probe shape tuning in higher areas, necessitating the use of more complex stimulus sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show how a circuit analysis, used widely in electrical engineering, finds application to problems of light wave injection and transport in subwavelength structures in the optical frequency range. Lumped circuit and transmission-line analysis may prove helpful in the design of plasmonic devices with standard, functional properties.