986 resultados para Structure failure
Resumo:
Understanding the mating patterns of populations of tree species is a key component of ex situ genetic conservation. In this study, we analysed the genetic diversity, spatial genetic structure (SGS) and mating system at the hierarchical levels of fruits and individuals as well as pollen dispersal patterns in a continuous population of Theobroma cacao in Para State, Brazil. A total of 156 individuals in a 0.56 ha plot were mapped and genotyped for nine microsatellite loci. For the mating system analyses, 50 seeds were collected from nine seed trees by sampling five fruits per tree (10 seeds per fruit). Among the 156 individuals, 127 had unique multilocus genotypes, and the remaining were clones. The population was spatially aggregated; it demonstrated a significant SGS up to 15m that could be attributed primarily to the presence of clones. However, the short seed dispersal distance also contributed to this pattern. Population matings occurred mainly via outcrossing, but selfing was observed in some seed trees, which indicated the presence of individual variation for self-incompatibility. The matings were also correlated, especially within ((r) over cap (p(m)) = 0.607) rather than among the fruits ((r) over cap (p(m)) = 0.099), which suggested that a small number of pollen donors fertilised each fruit. The paternity analysis suggested a high proportion of pollen migration (61.3%), although within the plot, most of the pollen dispersal encompassed short distances (28m). The determination of these novel parameters provides the fundamental information required to establish long-term ex situ conservation strategies for this important tropical species. Heredity (2011) 106, 973-985; doi:10.1038/hdy.2010.145; published online 8 December 2010
Resumo:
Objectives The study`s aims were to evaluate the antimycobacterial activity of 13 synthetic neolignan analogues and to perform structure activity relationship analysis (SAR). The cytotoxicity of the compound 2-phenoxy-1-phenylethanone (LS-2, 1) in mammalian cells, such as the acute toxicity in mice, was also evaluated. Methods The extra and intracellular antimycobacterial activity was evaluated on Mycobacterium tuberculosis H37Rv. Cytotoxicity studies were performed using V79 cells, J774 macrophages and rat hepatocytes. Additionally, the in-vivo acute toxicity was tested in mice. The SAR analysis was performed by Principal Component Analysis (PCA). Key findings Among the 13 analogues tested, LS-2 (1) was the most effective, showing promising antimycobacterial activity and very low cytotoxicity in V79 cells and in J774 macrophages, while no toxicity was observed in rat hepatocytes. The selectivity index (SI) of LS-2 (1) was 91 and the calculated LD50 was 1870 mg/kg, highlighting the very low toxicity in mice. SAR analysis showed that the highest electrophilicity and the lowest molar volume are physical-chemical characteristics important for the antimycobacterial activity of the LS-2 (1). Conclusions LS-2 (1) showed promising antimycobacterial activity and very weak cytotoxicity in cell culture, as well as an absence of toxicity in primary culture of hepatocytes. In the acute toxicity study there was an indication of absence of toxicity on murine models, in vivo.
Resumo:
Gangliosides are known to be important in many biological processes. However, details concerning the exact function of these glycosphingolipids in cell physiology are poorly understood. in this study, the role of gangliosides present on the surface of rodent mast cells in maintaining cell structure was examined using RBL-2H3 mast cells and two mutant cell lines (E5 and D1) deficient in the gangliosides, GM(1) and the alpha-galactosyl derivatives of the ganglioside GD(1b). The two deficient cell lines were morphologically different from each other as well as from the parental RBL-2H3 cells. Actin filaments in RBL-2H3 and E5 cells were under the plasma membrane following the spindle shape of the cells, whereas in D1 cells, they were concentrated in large membrane ruffles. Microtubules in RBL-2H3 and E5 cells radiated from the centrosome and were organized into long, straight bundles. The bundles in D1 cells were thicker and organized circumferentially under the plasma membrane. The endoplasmic reticulum, the Golgi complex, and the secretory granule matrix were also altered in the mutant cell lines. These results suggest that the mast cell-specific alpha-galactosyl derivatives of ganglioside GD(1b) and GM(1) are important in maintaining normal cell morphology. (J Histochern Cytochem 58:83-93, 2010)
Resumo:
Objectives: Arthroconidia have been considered as the primary cause of infection by dermatophytes. However, the in vitro antifungal testing evaluates the responses mainly of microconidia or hyphae, and dermatophytes in vivo often produce arthroconidia, a cellular structure presumably more resistant to antifungals. The aim of this study was to compare the in vitro susceptibility of microconidia and arthroconidia of Trichophyton rubrum, Trichophyton tonsurans and Trichophyton equinum to griseofulvin, itraconazole, terbinafine, fluconazole, amphotericin B and hygromycin B. Methods: Microconidia and arthroconidia were produced in vitro, and their susceptibility to each drug was evaluated by assessing the CLSI M38-A broth microdilution method. Results: Arthroconidia of all strains analysed appeared to be more resistant to fluconazole, griseofulvin and itraconazole than microconidia. The MIC of terbinafine was the same for microconidia and arthroconidia for all strains, and the MIC of amphotericin B for microconidia and arthroconidia was the same for isolates of T. equinum and T. tonsurans, but differed for T. rubrum. Finally, the level of resistance of microconidia for all strains towards the antibiotic hygromycin B was from 25 to 400 mg/L. Conclusions: The difference in the susceptibility between microconidia and arthroconidia depends on the drug and on the strain, and may be one of the causes of therapeutic failure. Also, the level of resistance to the antibiotic hygromycin B presented by microconidia of these isolates will allow the use of hygromycin resistance as a dominant marker in fungal transformation procedures in future studies of gene function.
Resumo:
Background Disease management programs (DMPs) are developed to address the high morbi-mortality and costs of congestive heart failure (CHF). Most studies have focused on intensive programs in academic centers. Washington County Hospital (WCH) in Hagerstown, MD, the primary reference to a semirural county, established a CHF DMP in 2001 with standardized documentation of screening and participation. Linkage to electronic records and state vital statistics enabled examination of the CHF population including individuals participating and those ineligible for the program. Methods All WCH inpatients with CHF International Classification of Diseases, Ninth Revision code in any position of the hospital list discharged alive. Results Of 4,545 consecutive CHF admissions, only 10% enrolled and of those only 52.2% made a call. Enrollment in the program was related to: age (OR 0.64 per decade older, 95% CI 0.58-0.70), CHF as the main reason for admission (OR 3.58, 95% CI 2.4-4.8), previous admission for CHF (OR 1.14, 95% CI 1.09-1.2), and shorter hospital stay (OR 0.94 per day longer, 95% CI 0.87-0.99). Among DMP participants mortality rates were lowest in the first month (80/1000 person-years) and increased subsequently. The opposite mortality trend occurred in nonenrolled groups with mortality in the first month of 814 per 1000 person-years in refusers and even higher in ineligible (1569/1000 person-years). This difference remained significant after adjustment. Re-admission rates were lower among participants who called consistently (adjusted incidence rate ratio 0.62, 95% CI 0.52-0.77). Conclusion Only a small and highly select group participated in a low-intensity DMP for CHF in a community-based hospital. Design of DMPs should incorporate these strong selective factors to maximize program impact. (Am Heart J 2009; 15 8:459-66.)