995 resultados para Structural parameter
Resumo:
INTRODUCTION: A growing body of evidence shows the prognostic value of oxygen uptake efficiency slope (OUES), a cardiopulmonary exercise test (CPET) parameter derived from the logarithmic relationship between O(2) consumption (VO(2)) and minute ventilation (VE) in patients with chronic heart failure (CHF). OBJECTIVE: To evaluate the prognostic value of a new CPET parameter - peak oxygen uptake efficiency (POUE) - and to compare it with OUES in patients with CHF. METHODS: We prospectively studied 206 consecutive patients with stable CHF due to dilated cardiomyopathy - 153 male, aged 53.3±13.0 years, 35.4% of ischemic etiology, left ventricular ejection fraction 27.7±8.0%, 81.1% in sinus rhythm, 97.1% receiving ACE-Is or ARBs, 78.2% beta-blockers and 60.2% spironolactone - who performed a first maximal symptom-limited treadmill CPET, using the modified Bruce protocol. In 33% of patients an cardioverter-defibrillator (ICD) or cardiac resynchronization therapy device (CRT-D) was implanted during follow-up. Peak VO(2), percentage of predicted peak VO(2), VE/VCO(2) slope, OUES and POUE were analyzed. OUES was calculated using the formula VO(2) (l/min) = OUES (log(10)VE) + b. POUE was calculated as pVO(2) (l/min) / log(10)peakVE (l/min). Correlation coefficients between the studied parameters were obtained. The prognosis of each variable adjusted for age was evaluated through Cox proportional hazard models and R2 percent (R2%) and V index (V6) were used as measures of the predictive accuracy of events of each of these variables. Receiver operating characteristic (ROC) curves from logistic regression models were used to determine the cut-offs for OUES and POUE. RESULTS: pVO(2): 20.5±5.9; percentage of predicted peak VO(2): 68.6±18.2; VE/VCO(2) slope: 30.6±8.3; OUES: 1.85±0.61; POUE: 0.88±0.27. During a mean follow-up of 33.1±14.8 months, 45 (21.8%) patients died, 10 (4.9%) underwent urgent heart transplantation and in three patients (1.5%) a left ventricular assist device was implanted. All variables proved to be independent predictors of this combined event; however, VE/VCO2 slope was most strongly associated with events (HR 11.14). In this population, POUE was associated with a higher risk of events than OUES (HR 9.61 vs. 7.01), and was also a better predictor of events (R2: 28.91 vs. 22.37). CONCLUSION: POUE was more strongly associated with death, urgent heart transplantation and implantation of a left ventricular assist device and proved to be a better predictor of events than OUES. These results suggest that this new parameter can increase the prognostic value of CPET in patients with CHF.
Resumo:
Bipedal gaits have been classified on the basis of the group symmetry of the minimal network of identical differential equations (alias cells) required to model them. Primary bipedal gaits (e.g., walk, run) are characterized by dihedral symmetry, whereas secondary bipedal gaits (e.g., gallop-walk, gallop- run) are characterized by a lower, cyclic symmetry. This fact has been used in tests of human odometry (e.g., Turvey et al. in P Roy Soc Lond B Biol 276:4309–4314, 2009, J Exp Psychol Hum Percept Perform 38:1014–1025, 2012). Results suggest that when distance is measured and reported by gaits from the same symmetry class, primary and secondary gaits are comparable. Switching symmetry classes at report compresses (primary to secondary) or inflates (secondary to primary) measured distance, with the compression and inflation equal in magnitude. The present research (a) extends these findings from overground locomotion to treadmill locomotion and (b) assesses a dynamics of sequentially coupled measure and report phases, with relative velocity as an order parameter, or equilibrium state, and difference in symmetry class as an imperfection parameter, or detuning, of those dynamics. The results suggest that the symmetries and dynamics of distance measurement by the human odometer are the same whether the odometer is in motion relative to a stationary ground or stationary relative to a moving ground.
Resumo:
In this study, the behaviour of two structural adhesives modified with thermally expandable particles (TEPs) was investigated as a preliminary study for further investigations on the potential of TEPs in adhesive joints. Tensile bulk tests were performed to get the tensile properties of the adhesives and TEPs-modified adhesives. In order to determine the expansion temperature of the particles while encapsulated in these particular adhesive systems, the variation of the volume of adhesive samples modified with different TEPs concentration as a function of temperature was measured. Further, the possibility of any chemical interactions between TEPs and adhesives matrix in the TEPs-modified specimens was verified by a Fourier transform infrared spectroscopy analysis. Finally, the fracture surfaces of the unmodified and TEPs-modified specimens, as well as the dispersion and the morphology of the particles, were examined by a scanning electron microscopy analysis. It was found that the stiffness of the TEPs-modified adhesives is not affected by incorporation of TEPs in the adhesives matrix, while the tensile yield strength decreased by increasing the wt% TEPs content. In applications of such particular materials (TEPs-modified adhesives), the temperature should be controlled to stay between 90°C and 120°C in order to obtain the highest expansion ratio. At a lower temperature, not all the particles will expand, and above, the TEPs will deteriorate and as a result the TEPs-modified adhesives will deteriorate.
Resumo:
The isolation of the bartolosides, unprecedented cyanobacterial glycolipids featuring aliphatic chains with chlorine substituents and C-glycosyl moieties, is reported. Their chlorinated dialkylresorcinol (DAR) core presented a major structural-elucidation challenge. To overcome this, we discovered the bartoloside (brt) biosynthetic gene cluster and linked it to the natural products through in vitro characterization of the DAR-forming ketosynthase and aromatase. Bioinformatic analysis also revealed a novel potential halogenase. Knowledge of the bartoloside biosynthesis constrained the DAR core structure by defining key pathway intermediates, ultimately allowing us to determine the full structures of the bartolosides. This work illustrates the power of genomics to enable the use of biosynthetic information for structure elucidation.
Resumo:
This is a short summary of some aspects of structural change models, and is not intended to be comprehensive survey or review. Many important works have been left out. Also, the presentation was not intended to be rigorous nor general. It’s main purpose is only to focus on some recent developments in this area and motivate the reader to learn more.
Resumo:
Old timber structures may show significant variation in the cross section geometry along the same element, as a result of both construction methods and deterioration. As consequence, the definition of the geometric parameters in situ may be both time consuming and costly. This work presents the results of inspections carried out in different timber structures. Based on the obtained results, different simplified geometric models are proposed in order to efficiently model the geometry variations found. Probabilistic modelling techniques are also used to define safety parameters of existing timber structures, when subjected to dead and live loads, namely self-weight and wind actions. The parameters of the models have been defined as probabilistic variables, and safety of a selected case study was assessed using the Monte Carlo simulation technique. Assuming a target reliability index, a model was defined for both the residual cross section and the time dependent deterioration evolution. As a consequence, it was possible to compute probabilities of failure and reliability indices, as well as, time evolution deterioration curves for this structure. The results obtained provide a proposal for definition of the cross section geometric parameters of existing timber structures with different levels of decay, using a simplified probabilistic geometry model and considering a remaining capacity factor for the decayed areas. This model can be used for assessing the safety of the structure at present and for predicting future performance.
Resumo:
Os adesivos têm sido alvo de estudo ao longo dos últimos anos para ligação de componentes a nível industrial. Devido à crescente utilização das juntas adesivas, torna-se necessária a existência de modelos de previsão de resistência que sejam fiáveis e robustos. Neste âmbito, a determinação das propriedades dos adesivos é fundamental para o projeto de ligações coladas. Uma abordagem recente consiste no uso de modelos de dano coesivo (MDC), que permitem simular o comportamento à fratura das juntas de forma bastante fiável. Esta técnica requer a definição das leis coesivas em tração e corte. Estas leis coesivas dependem essencialmente de 2 parâmetros: a tensão limite e a tenacidade no modo de solicitação respetivo. O ensaio End-Notched Flexure (ENF) é o mais utilizado para determinar a tenacidade em corte, porque é conhecido por ser o mais expedito e fiável para caraterizar este parâmetro. Neste ensaio, os provetes são sujeitos a flexão em 3 pontos, sendo apoiados nas extremidades e solicitados no ponto médio para promover a flexão entre substratos, o que se reflete numa solicitação de corte no adesivo. A partir deste ensaio, e após de definida a tenacidade em corte (GIIc), existem alguns métodos para estimativa da lei coesiva respetiva. Nesta dissertação são definidas as leis coesivas em corte de três adesivos estruturais através do ensaio ENF e um método inverso de ajuste dos dados experimentais. Para o efeito, foram realizados ensaios experimentais considerado um adesivo frágil, o Araldite® AV138, um adesivo moderadamente dúctil, o Araldite® 2015 e outro dúctil, o SikaForce® 7752. O trabalho experimental consistiu na realização dos ensaios ENF e respetivo tratamento dos dados para obtenção das curvas de resistência (curvas-R) através dos seguintes métodos: Compliance Calibration Method (CCM), Direct Beam Theory (DBT), Corrected Beam Theory (CBT) e Compliance-Based Beam Method (CBBM). Os ensaios foram simulados numericamente pelo código comercial ABAQUS®, recorrendo ao Métodos de Elementos Finitos (MEF) e um MDC triangular, com o intuito de estimar a lei coesiva de cada um dos adesivos em solicitação de corte. Após este estudo, foi feita uma análise de sensibilidade ao valor de GIIc e resistência coesiva ao corte (tS 0), para uma melhor compreensão do efeito destes parâmetros na curva P- do ensaio ENF. Com o objetivo de testar adequação dos 4 métodos de obtenção de GIIc usados neste trabalho, estes foram aplicados a curvas P- numéricas de cada um dos 3 adesivos, e os valores de GIIc previstos por estes métodos comparados com os respetivos valores introduzidos nos modelos numéricos. Como resultado do trabalho realizado, conseguiu-se obter uma lei coesiva única em corte para cada um dos 3 adesivos testados, que é capaz de reproduzir com precisão os resultados experimentais.
Resumo:
Thesis for the master degree in Structural and Functional Biochemistry
Resumo:
J Biol Inorg Chem (2010) 15:409–420 DOI 10.1007/s00775-009-0613-6
Resumo:
J. Am. Chem. Soc., 2009, 131 (23), pp 7990–7998 DOI: 10.1021/ja809448r
Correlating EPR and X-ray structural analysis of arsenite-inhibited forms of aldehyde oxidoreductase
Resumo:
J Biol Inorg Chem (2007) 12:353–366 DOI 10.1007/s00775-006-0191-9
Resumo:
Acc. Chem. Res., 2006, 39 (10), pp 788–796 DOI: 10.1021/ar050104k
Resumo:
J Biol Inorg Chem (2006) 11: 307–315 DOI 10.1007/s00775-005-0077-2
Resumo:
Clin Sci (Lond). 2002 Nov;103(5):475-85
Resumo:
Dissertação para obtenção do Grau de Doutor em Bioquímica, ramo de Biotecnologia