960 resultados para Stomatal conductance
Resumo:
It is generally accepted that K+ uptake into guard cells via inward-rectifying K+ channels is required for stomatal opening. To test whether the guard cell K+ channel KAT1 is essential for stomatal opening, a knockout mutant, KAT1∷En-1, was isolated from an En-1 mutagenized Arabidopsis thaliana population. Stomatal action and K+ uptake, however, were not impaired in KAT1-deficient plants. Reverse transcription–PCR experiments with isolated guard cell protoplasts showed that in addition to KAT1, the K+ channels AKT1, AKT2/3, AtKC1, and KAT2 were expressed in this cell type. In impalement measurements, intact guard cells exhibited inward-rectifying K+ currents across the plasma membrane of both wild-type and KAT1∷En-1 plants. This study demonstrates that multiple K+ channel transcripts exist in guard cells and that KAT1 is not essential for stomatal action.
Resumo:
ATP-binding cassette (ABC) transporters bind and hydrolyze ATP. In the cystic fibrosis transmembrane conductance regulator Cl− channel, this interaction with ATP generates a gating cycle between a closed (C) and two open (O1 and O2) conformations. To understand better how ATP controls channel activity, we examined gating transitions from the C to the O1 and O2 states and from these open states to the C conformation. We made three main observations. First, we found that the channel can open into either the O1 or O2 state, that the frequency of transitions to both states was increased by ATP concentration, and that ATP increased the relative proportion of openings into O1 vs. O2. These results indicate that ATP can interact with the closed state to open the channel in at least two ways, which may involve binding to nucleotide-binding domains (NBDs) NBD1 and NBD2. Second, ATP prolonged the burst duration and altered the way in which the channel closed. These data suggest that ATP also interacts with the open channel. Third, the channel showed runs of specific types of open–closed transitions. This finding suggests a mechanism with more than one cycle of gating transitions. These data suggest models to explain how ATP influences conformational transitions in cystic fibrosis transmembrane conductance regulator and perhaps other ABC transporters.
Resumo:
The content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Et; EC 4.1.1.39) measured in different-aged leaves of sunflower (Helianthus annuus) and other plants grown under different light intensities, varied from 2 to 75 μmol active sites m−2. Mesophyll conductance (μ) was measured under 1.5% O2, as well as postillumination CO2 uptake (assimilatory charge, a gas-exchange measure of the ribulose-1,5-bisphosphate pool). The dependence of μ on Et saturated at Et = 30 μmol active sites m−2 and μ = 11 mm s−1 in high-light-grown leaves. In low-light-grown leaves the dependence tended toward saturation at similar Et but reached a μ of only 6 to 8 mm s−1. μ was proportional to the assimilatory charge, with the proportionality constant (specific carboxylation efficiency) between 0.04 and 0.075 μm−1 s−1. Our data show that the saturation of the relationship between Et and μ is caused by three limiting components: (a) the physical diffusion resistance (a minor limitation), (b) less than full activation of Rubisco (related to Rubisco activase and the slower diffusibility of Rubisco at high protein concentrations in the stroma), and (c) chloroplast metabolites, especially 3-phosphoglyceric acid and free inorganic phosphate, which control the reaction kinetics of ribulose-1,5-bisphosphate carboxylation by competitive binding to active sites.
Resumo:
The cystic fibrosis transmembrane conductance regulator (CFTR) protein has the ability to function as both a chloride channel and a channel regulator. The loss of these functions explains many of the manifestations of the cystic fibrosis disease (CF), including lung and pancreatic failure, meconium ileus, and male infertility. CFTR has previously been implicated in the cell regulatory volume decrease (RVD) response after hypotonic shocks in murine small intestine crypts, an effect associated to the dysfunction of an unknown swelling-activated potassium conductance. In the present study, we investigated the RVD response in human tracheal CF epithelium and the nature of the volume-sensitive potassium channel affected. Neither the human tracheal cell line CFT1, expressing the mutant CFTR-ΔF508 gene, nor the isogenic vector control line CFT1-LC3, engineered to express the βgal gene, showed RVD. On the other hand, the cell line CFT1-LCFSN, engineered to express the wild-type CFTR gene, presented a full RVD. Patch-clamp studies of swelling-activated potassium currents in the three cell lines revealed that all of them possess a potassium current with the biophysical and pharmacological fingerprints of the intermediate conductance Ca2+-dependent potassium channel (IK, also known as KCNN4). However, only CFT1-LCFSN cells showed an increase in IK currents in response to hypotonic challenges. Although the identification of the molecular mechanism relating CFTR to the hIK channel remains to be solved, these data offer new evidence on the complex integration of CFTR in the cells where it is expressed.
Resumo:
Chronic Pseudomonas aeruginosa infection occurs in 75–90% of patients with cystic fibrosis (CF). It is the foremost factor in pulmonary function decline and early mortality. A connection has been made between mutant or missing CF transmembrane conductance regulator (CFTR) in lung epithelial cell membranes and a failure in innate immunity leading to initiation of P. aeruginosa infection. Epithelial cells use CFTR as a receptor for internalization of P. aeruginosa via endocytosis and subsequent removal of bacteria from the airway. In the absence of functional CFTR, this interaction does not occur, allowing for increased bacterial loads in the lungs. Binding occurs between the outer core of the bacterial lipopolysaccharide and amino acids 108–117 in the first predicted extracellular domain of CFTR. In experimentally infected mice, inhibiting CFTR-mediated endocytosis of P. aeruginosa by inclusion in the bacterial inoculum of either free bacterial lipopolysaccharide or CFTR peptide 108–117 resulted in increased bacterial counts in the lungs. CFTR is also a receptor on gastrointestinal epithelial cells for Salmonella enterica serovar Typhi, the etiologic agent of typhoid fever. There was a significant decrease in translocation of this organism to the gastrointestinal submucosa in transgenic mice that are heterozygous carriers of a mutant ΔF508 CFTR allele, suggesting heterozygous CFTR carriers may have increased resistance to typhoid fever. The identification of CFTR as a receptor for bacterial pathogens could underlie the biology of CF lung disease and be the basis for the heterozygote advantage for carriers of mutant alleles of CFTR.
Resumo:
Membrane and secretory proteins fold in the endoplasmic reticulum (ER), and misfolded proteins may be retained and targeted for ER-associated protein degradation (ERAD). To elucidate the mechanism by which an integral membrane protein in the ER is degraded, we studied the fate of the cystic fibrosis transmembrane conductance regulator (CFTR) in the yeast Saccharomyces cerevisiae. Our data indicate that CFTR resides in the ER and is stabilized in strains defective for proteasome activity or deleted for the ubiquitin-conjugating enzymes Ubc6p and Ubc7p, thus demonstrating that CFTR is a bona fide ERAD substrate in yeast. We also found that heat shock protein 70 (Hsp70), although not required for the degradation of soluble lumenal ERAD substrates, is required to facilitate CFTR turnover. Conversely, calnexin and binding protein (BiP), which are required for the proteolysis of ER lumenal proteins in both yeast and mammals, are dispensable for the degradation of CFTR, suggesting unique mechanisms for the disposal of at least some soluble and integral membrane ERAD substrates in yeast.
Resumo:
Imaging of photochemical yield of photosystem II (PSII) computed from leaf chlorophyll fluorescence images and gas-exchange measurements were performed on Rosa rubiginosa leaflets during abscisic acid (ABA) addition. In air ABA induced a decrease of both the net CO2 assimilation (An) and the stomatal water vapor conductance (gs). After ABA treatment, imaging in transient nonphotorespiratory conditions (0.1% O2) revealed a heterogeneous decrease of PSII photochemical yield. This decline was fully reversed by a transient high CO2 concentration (7400 μmol mol−1) in the leaf atmosphere. It was concluded that ABA primarily affected An by decreasing the CO2 supply at ribulose-1,5-bisphosphate carboxylase/oxygenase. Therefore, the An versus intercellular mole fraction (Ci) relationship was assumed not to be affected by ABA, and images of Ci and gs were constructed from images of PSII photochemical yield under nonphotorespiratory conditions. The distribution of gs remained unimodal following ABA treatment. A comparison of calculations of Ci from images and gas exchange in ABA-treated leaves showed that the overestimation of Ci estimated from gas exchange was only partly due to heterogeneity. This overestimation was also attributed to the cuticular transpiration, which largely affects the calculation of the leaf conductance to CO2, when leaf conductance to water is low.
Resumo:
Bovine heart cytochrome c oxidase is an electron-current driven proton pump. To investigate the mechanism by which this pump operates it is important to study individual electron- and proton-transfer reactions in the enzyme, and key reactions in which they are kinetically and thermodynamically coupled. In this work, we have simultaneously measured absorbance changes associated with electron-transfer reactions and conductance changes associated with protonation reactions following pulsed illumination of the photolabile complex of partly reduced bovine cytochrome c oxidase and carbon monoxide. Following CO dissociation, several kinetic phases in the absorbance changes were observed with time constants ranging from approximately 3 microseconds to several milliseconds, reflecting internal electron-transfer reactions within the enzyme. The data show that the rate of one of these electron-transfer reactions, from cytochrome a3 to a on a millisecond time scale, is controlled by a proton-transfer reaction. These results are discussed in terms of a model in which cytochrome a3 interacts electrostatically with a protonatable group, L, in the vicinity of the binuclear center, in equilibrium with the bulk through a proton-conducting pathway, which determines the rate of proton transfer (and indirectly also of electron transfer). The interaction energy of cytochrome a3 with L was determined independently from the pH dependence of the extent of the millisecond-electron transfer and the number of protons released, as determined from the conductance measurements. The magnitude of the interaction energy, 70 meV (1 eV = 1.602 x 10(-19) J), is consistent with a distance of 5-10 A between cytochrome a3 and L. Based on the recently determined high-resolution x-ray structures of bovine and a bacterial cytochrome c oxidase, possible candidates for L and a physiological role for L are discussed.
Resumo:
Previous studies have suggested a role for cystic fibrosis transmembrane conductance regulator (CFTR) in the regulation of intracellular vesicular trafficking. A quantitative fluorescence method was used to test the hypothesis that CFTR expression and activation affects endosome-endosome fusion in intact cells. Endosomes from CFTR-expressing and control (vector-transfected) Swiss 3T3 fibroblasts were labeled by internalization with 4,4-difluoro-5,7-dimethyl-4-bora-3a, 4a-diaza-s-indacene (Bodipy)-avidin, a fluid-phase marker whose fluorescence increases approximately 8-fold upon biotin binding. Cells were washed, chased, and then labeled with biotin-albumin or biotin-transferrin. The fraction of Bodipy-avidin-labeled endosomes that fused with biotin-containing endosomes (f(fusion)) was quantified by ratio imaging microfluorimetry. Endosome fusion in unstimulated CFTR-expressing cells was similar to that in control cells. However, in CFTR-expressing cells activated by forskolin, ffusion was increased by 1.30 +/- 0.18- and 2.65 +/- 0.17-fold for a 0 and 10 min chase time between avidin and biotin-albumin pulses; f(fusion) also increased (1.32 +/- 0.11-fold) when biotin-transferrin replaced biotin-albumin. The stimulation of endosome fusion was not due to differences in rates of endocytosis or endosomal acidification. Endosome fusion was not stimulated by forskolin in Cl--depleted CFTR-expressing cells, suggesting that the increase in endosome fusion is due to the CFTR chloride channel activity. These results provide evidence that CFTR is involved in the regulation of endosome fusion and, thus, a possible basis for the cellular defects associated with cystic fibrosis.
Resumo:
Carbon dioxide (CO2) has been increasing in atmospheric concentration since the Industrial Revolution. A decreasing number of stomata on leaves of land plants still provides the only morphological evidence that this man-made increase has already affected the biosphere. The current rate of CO2 responsiveness in individual long-lived species cannot be accurately determined from field studies or by controlled-environment experiments. However, the required long-term data sets can be obtained from continuous records of buried leaves from living trees in wetland ecosystems. Fine-resolution analysis of the lifetime leaf record of an individual birch (Betula pendula) indicates a gradual reduction of stomatal frequency as a phenotypic acclimation to CO2 increase. During the past four decades, CO2 increments of 1 part per million by volume resulted in a stomatal density decline of approximately 0.6%. It may be hypothesized that this plastic stomatal frequency response of deciduous tree species has evolved in conjunction with the overall Cenozoic reduction of atmospheric CO2 concentrations.
Resumo:
Certain forms of myotonia, a condition characterized by delayed relaxation of muscle secondary to sarcolemmal hyperexcitability, are caused by diminished chloride conductance in the muscle cell membrane. We have investigated the molecular basis for decreased muscle chloride conductance in the myotonic goat, an historically important animal model for the elucidation of the role of chloride in muscle excitation. A single nucleotide change causing the substitution of proline for a conserved alanine residue in the carboxyl terminus of the goat muscle chloride channel (gCIC-1) was discovered. Heterologous expression of the mutation demonstrated a substantial (+47 mV) shift in the midpoint of steady-state activation of the channel, resulting in a diminished channel open probability at voltages near the resting membrane potential of skeletal muscle. These results provide a molecular basis for the decreased chloride conductance in myotonic muscle.
Resumo:
There is increasing evidence for an additional acute, nongenomic action of the mineralocorticoid hormone aldosterone on renal epithelial cells, leading to a two-step model of mineralocorticoid action on electrolyte excretion. We investigated the acute effect of aldosterone on intracellular free Ca2+ and on intracellular pH in an aldosterone-sensitive Madin-Darby canine kidney cell clone. Within seconds of application of aldosterone, but not of the glucocorticoid hydrocortisone, there was a 3-fold sustained increase of intracellular Ca2+ at a half-maximal concentration of 10(-10) mol/liter. Omission of extracellular Ca2+ prevented this hormone response. In the presence of extracellular Ca2+ aldosterone led to intracellular alkalinization. The Na+/H+ exchange inhibitor ethyl-isopropanol-amiloride (EIPA) prevented the aldosterone-induced alkalinization but not the aldosterone-induced increase of intracellular Ca2+. Omission of extracellular Ca2+ also prevented aldosterone-induced alkalinization. Instead, aldosterone led to a Zn(2+)-dependent intracellular acidification in the presence of EIPA, indicative of an increase of plasma membrane proton conductance. Under control conditions, Zn2+ prevented the aldosterone-induced alkalinization completely. We conclude that aldosterone stimulated net-entry of Ca2+ from the extracellular compartment and a plasma membrane H+ conductance as prerequisites for the stimulation of plasma membrane Na+/H+ exchange which in turn modulates K+ channel acitivity. It is probable that the aldosterone-sensitive H+ conductance maintains Na+/H+ exchange activity by providing an acidic environment in the vicinity of the exchanger. Thus, genomic action of aldosterone determines cellular transport equipment, whereas the nongenomic action regulates transporter activity that requires responses within seconds or minutes, which explains the rapid effects on electrolyte excretion.
Resumo:
Two distinct molecular types (I and II) of renal proximal tubular brush border Na+/Pi cotransporters have been identified by expression cloning on the basis of their capacity to induce Na+-dependent Pi influx in tracer experiments. Whereas the type II transporters (e.g., NaPi-2 and NaPi-3) resemble well known characteristics of brush border Na+/Pi cotransport, little is known about the properties of the type I transporter (NaPi-1). In contrast to type II, type I transporters produced electrogenic transport only at high extracellular Pi concentrations (> or =3 mM). On the other hand, expression of NaPi-1 induced a Cl- conductance in Xenopus laevis oocytes, which was inhibited by Cl- channel blockers [5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) > niflumic acid >> 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid]. Further, the Cl- conductance was inhibited by the organic anions phenol red, benzylpenicillin (penicillin G), and probenecid. These organic anions induced outwardly directed currents in the absence of Cl-. In tracer studies, we observed uptake of benzylpenicillin with a Km of 0.22 mM; benzylpenicillin uptake was inhibited by NPPB and niflumic acid. These findings suggest that the type I Na+/Pi cotransporter functions also as a novel type of anion channel permeable not only for Cl- but also for organic anions. Such an apical anion channel could serve an important role in the transport of Cl- and the excretion of anionic xenobiotics.
Resumo:
Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-regulated, cAMP-activated chloride channel located in the apical membrane of many epithelial secretory cells. Here we report cloning of a cAMP-activated epithelial basolateral chloride conductance regulator (EBCR) that appears to be a basolateral CFTR counterpart. This novel chloride channel or regulator shows 49% identity with multidrug resistance-associated protein (MRP) and 29% identity with CFTR. On expression in Xenopus oocytes, EBCR confers a cAMP-activated chloride conductance that is inhibited by the chloride channel blockers niflumic acid, 5-nitro-2-(3-phenylpropylamine)benzoic acid, and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. Northern blot analysis reveals high expression in small intestine, kidney, and liver. In kidney, immunohistochemistry shows a conspicuous basolateral localization mainly in the thick ascending limb of Henle's loop, distal convoluted tubules and to a lesser extent connecting tubules. These data suggest that in the kidney EBCR is involved in hormone-regulated chloride reabsorption.
Resumo:
Application of L-glutamate to retinal glial (Müller) cells results in an inwardly rectifying current due to the net influx of one positive charge per molecule of glutamate transported into the cell. However, at positive potentials an outward current can be elicited by glutamate. This outward current is eliminated by removal of external chloride ions. Substitution of external chloride with the anions thiocyanate, perchlorate, nitrate, and iodide, which are known to be more permeant at other chloride channels, results in a considerably larger glutamate-elicited outward current at positive potentials. The large outward current in external nitrate has the same ionic dependence, apparent affinity for L-glutamate, and pharmacology as the glutamate transporter previously reported to exist in these cells. Varying the concentration of external nitrate shifts the reversal potential in a manner consistent with a conductance permeable to nitrate. Together, these results suggest that the glutamate transporter in retinal glial cells is associated with an anionic conductance. This anionic conductance may be important for preventing a reduction in the rate of transport due the depolarization that would otherwise occur as a result of electrogenic glutamate uptake.