996 resultados para Statistical maps.
Resumo:
A relationship between the cumulative length of microcracks and the amplitude and duration of tensile impulse in spallation was established based on the application of statistical microdamage mechanics, which included a statistical formulation and dynamic laws of microdamage under loading. Since the degrees of spallation, called incipient, intermediate and complete spallation, can be characterized by the cumulative length of microcracks, a physical interpretation of an empirical criterion to spallation was presented.
Resumo:
A new statistical formulation and a relevant experimental approach to determine the growth rate of microcracks were proposed. The method consists of experimental measurements and a statistical analysis' on the basis of the conservation law of number density of microcracks in phase space. As a practical example of the method, the growth rate of microcracks appearing in an aluminium alloy subjected to planar impact loading was determined to be ca. 10 mu m/mu s under a tensile stress of 1470 MPa and load duration between 0.26 mu s and 0.80 mu s.
Resumo:
A model of dynamical process and stochastic jump has been put forward to study the pattern evolution in damage-fracture. According to the final states of evolution processes, the evolution modes can be classified as globally stable modes (GS modes) and evolution induced catastrophic modes (ElC modes); the latter are responsible for fracture. A statistical description is introduced to clarify the pattern evolution in this paper. It is indicated that the appearance of fracture in disordered materials should be depicted by probability distribution function.
Resumo:
In order to understand the mechanism of the incipient spallation in rolled metals, a one dimensional statistical mode1 on evolution of microcracks in spallation was proposed. The crack length appears to be the fundamental variable in the statistical description. Two dynamic processes, crack nucleation and growth, were involved in the model of damage evolution. A simplified case was examined and preliminary correlation to experimental observations of spallation was made.
Resumo:
This paper is aimed at establishing a statistical theory of rotational and vibrational excitation of polyatomic molecules by an intense IR laser. Starting from the Wigner function of quantum statistical mechanics, we treat the rotational motion in the classical approximation; the vibrational modes are classified into active ones which are coupled directly with the laser and the background modes which are not coupled with the laser. The reduced Wigner function, i.e., the Wigner function integrated over all background coordinates should satisfy an integro-differential equation. We introduce the idea of ``viscous damping'' to handle the interaction between the active modes and the background. The damping coefficient can be calculated with the aid of the well-known Schwartz–Slawsky–Herzfeld theory. The resulting equation is solved by the method of moment equations. There is only one adjustable parameter in our scheme; it is introduced due to the lack of precise knowledge about the molecular potential. The theory developed in this paper explains satisfactorily the recent absorption experiments of SF6 irradiated by a short pulse CO2 laser, which are in sharp contradiction with the prevailing quasi-continuum theory. We also refined the density of energy levels which is responsible for the muliphoton excitation of polyatomic molecules.
Resumo:
The method of statistical mechanics is applied to the study of the one-dimensional model of turbulence proposed in an earlier paper. The closure problem is solved by the variational approach which has been developed for the three-dimensional case, yielding two integral equations for two unknown functions. By solving the two integral equations, the Kolmogorov k−5/3 law is derived and the (one-dimensional) Kolmogorov constant Ko is evaluated, obtaining Ko=0.55, which is in good agreement with the result of numerical experiments on one-dimensional turbulence.
Resumo:
The vorticity dynamics of two-dimensional turbulence are investigated analytically, applying the method of Qian (1983). The vorticity equation and its Fourier transform are presented; a set of modal parameters and a modal dynamic equation are derived; and the corresponding Liouville equation for the probability distribution in phase space is solved using a Langevin/Fokker-Planck approach to obtain integral equations for the enstrophy and for the dynamic damping coefficient eta. The equilibrium spectrum for inviscid flow is found to be a stationary solution of the enstrophy equation, and the inertial-range spectrum is determined by introducing a localization factor in the two integral equations and evaluating the localized versions numerically.