784 resultados para Sri Lankan Tamils
Resumo:
A new multimodal biometric database designed and acquired within the framework of the European BioSecure Network of Excellence is presented. It is comprised of more than 600 individuals acquired simultaneously in three scenarios: 1) over the Internet, 2) in an office environment with desktop PC, and 3) in indoor/outdoor environments with mobile portable hardware. The three scenarios include a common part of audio/video data. Also, signature and fingerprint data have been acquired both with desktop PC and mobile portable hardware. Additionally, hand and iris data were acquired in the second scenario using desktop PC. Acquisition has been conducted by 11 European institutions. Additional features of the BioSecure Multimodal Database (BMDB) are: two acquisition sessions, several sensors in certain modalities, balanced gender and age distributions, multimodal realistic scenarios with simple and quick tasks per modality, cross-European diversity, availability of demographic data, and compatibility with other multimodal databases. The novel acquisition conditions of the BMDB allow us to perform new challenging research and evaluation of either monomodal or multimodal biometric systems, as in the recent BioSecure Multimodal Evaluation campaign. A description of this campaign including baseline results of individual modalities from the new database is also given. The database is expected to be available for research purposes through the BioSecure Association during 2008.
Resumo:
Integration of indigenous knowledge and ethnoscientific approaches into contemporary frameworks for conservation and sustainable management of natural resources will become increasingly important in policies on an international and national level. We set the scene on how this can be done by exploring the key conditions and dimensions of a dialogue between ‘ontologies’ and the roles, which ethnosciences could play in this process. First, the roles which ethnosciences in the context of sustainable development were analysed, placing emphasis on the implications arising when western sciences aspire to relate to indigenous forms of knowledge. Secondly, the contributions of ethnosciences to such an ‘inter-ontological dialogue’ were explored, based on an ethnoecological study of the encounter of sciences and indigenous knowledge in the Andes of Bolivia, and reviewed experiences from mangrove systems in Kenya, India and Sri Lanka, and from case-studies in other ecosystems world-wide.
Resumo:
It has been noted that immigrant women often initiate prenatal care late in their pregnancy and thus may be inadequately prepared for their birth experience. This leads to poorer maternal outcomes and higher morbidity statistics compared to Swiss women. Tamil women of Sri Lanka represent the largest group of immigrant women being seen at the antenatal care clinic of a Swiss University Hospital. To get a deeper understanding of their needs and expectations relative to their antenatal care, a qualitative study was undertaken. Problem centred interviews were conducted with seven Tamil women before and after delivery. An interpreter was consulting. Data were analyzed using content analysis methods as described by Mayring. Four main themes emerged, demonstrating the need of the women and their resulting expectation: 1) to receive esteem--to show respect and attention; 2) to consult with somebody--to ensure communication; 3) to alleviate worries and fear--to give a sense of security and be in charge; and 4) to make up for lack of experience and knowledge--to pass on experience and knowledge. The quality of the relationships to caregivers is viewed as pivotal and seems to influence Tamil women's satisfaction and their motivation to receive prenatal care.
Resumo:
PRINCIPALS Over the last two decades, the total annual number of applications for asylum in the countries of the European Union has increased from 15,000 to more than 300,000 people. The aim of this study was to give a first overview on multimorbidity of adult asylum seekers. METHODS Our retrospective Swiss single center data analysis examined multimorbidity of adult asylums seekers admitted to our ED between 1 January 2000 and 31 December 2012. RESULTS A total of 3170 patients were eligible for the study; they were predominantly male (2392 male, 75.5% versus 778 female, 24.5). The median age of the patients was 28 years (range 28-82). The most common region of origin was Africa (1544, 48.7%), followed by the Middle East (736, 23.6%). 2144 (67.6%) of all patients were not multimorbid. A total of 1183 (37.7%) of our patients were multimorbid. The mean Charlson comorbidity index was 0.25 (SD 1.1, range 0-12). 634 (20%) of all patients sufferem from psychiatric diseases, followed by chronic medical conditions (12.6%, 399) and infectious diseases (4.7%, 150). Overall, 11% (349) of our patients presented as a direct consequence of prior violence. Patients from Sri Lanka/India most often suffered from addictions problems (50/240, 20.8%, p<0.0001). Infectious diseases were most frequent in patients from Africa (6.6%), followed by the Balkans and Eastern Europe/Russia (each 3.8%). CONCLUSION The health care problems of asylum seekers are manifold. More than 60% of the study population assessed in our study did not suffer from more than one disease. Nevertheless a significant percentage of asylum seekers is multimorbid and exhibits underlying psychiatric, infectious or chronic medical conditions despite their young age.
Resumo:
The haloarchaeal phototaxis receptor sensory rhodopsin I (SRI) in complex with its transducer HtrI delivers an attractant signal from excitation with an orange photon and a repellent signal from a second near-UV photon excitation. Using a proteoliposome system with purified SRI in complex with its transducer HtrI, we identified by site-directed fluorescence labeling a site (Ser(155)) on SRI that is conformationally active in signal relay to HtrI. Using site-directed spin labeling of Ser(155)Cys with a nitroxide side chain, we detected a change in conformation following one-photon excitation such that the spin probe exhibits a splitting of the outer hyperfine extrema (2A'(zz)) significantly smaller than that of the electron paramagnetic resonance spectrum in the dark state. The dark conformations of five mutant complexes that do not discriminate between orange and near-UV excitation show shifts to lower or higher 2A'(zz) values correlated with the alterations in their motility behavior to one- and two-photon stimuli. These data are interpreted in terms of a model in which the dark complex is populated by two conformers in the wild type, one that inhibits the CheA kinase (A) and the other that activates it (R), shifted in the dark by mutations and shifted in the wild-type SRI-HtrI complex in opposite directions by one-photon and two-photon reactions.
Resumo:
Attractant and repellent signaling conformers of the dual-signaling phototaxis receptor sensory rhodopsin I and its transducer subunit (SRI-HtrI) have recently been distinguished experimentally by the opposite connection of their retinylidene protonated Schiff bases to the outwardly located periplasmic side and inwardly located cytoplasmic side. Here we show that the pK(a) of the outwardly located Asp76 counterion in the outwardly connected conformer is lowered by approximately 1.5 units from that of the inwardly connected conformer. The pK(a) difference enables quantitative determination of the relative amounts of the two conformers in wild-type cells and behavioral mutants prior to photoexcitation, comparison of their absorption spectra, and determination of their relative signaling efficiency. We have shown that the one-photon excitation of the SRI-HtrI attractant conformer causes a Schiff base connectivity switch from inwardly connected to outwardly connected states in the attractant signaling photoreaction. Conversely, a second near-UV photon drives the complex back to the inwardly connected conformer in the repellent signaling photoreaction. The results suggest a model of the color-discriminating dual-signaling mechanism in which phototaxis responses (his-kinase modulation) result from the photointerconversion of the two oppositely connected SRI-HtrI conformers by one-photon and two-photon activation. Furthermore, we find that the related repellent phototaxis SRII-HtrII receptor complex has an outwardly connected retinylidene Schiff base like the repellent signaling forms of the SRI-HtrI complex, indicating the general applicability of macro conformational changes, which can be detected by the connectivity switch, to phototaxis signaling by sensory rhodopsin-transducer complexes.
Resumo:
Sensory rhodopsin I (SRI) in Halobacterium salinarum acts as a receptor for single-quantum attractant and two-quantum repellent phototaxis, transmitting light stimuli via its bound transducer HtrI. Signal-inverting mutations in the SRI-HtrI complex reverse the single-quantum response from attractant to repellent. Fast intramolecular charge movements reported here reveal that the unphotolyzed SRI-HtrI complex exists in two conformational states, which differ by their connection of the retinylidene Schiff base in the SRI photoactive site to inner or outer half-channels. In single-quantum photochemical reactions, the conformer with the Schiff base connected to the cytoplasmic (CP) half-channel generates an attractant signal, whereas the conformer with the Schiff base connected to the extracellular (EC) half-channel generates a repellent signal. In the wild-type complex the conformer equilibrium is poised strongly in favor of that with CP-accessible Schiff base. Signal-inverting mutations shift the equilibrium in favor of the EC-accessible Schiff base form, and suppressor mutations shift the equilibrium back toward the CP-accessible Schiff base form, restoring the wild-type phenotype. Our data show that the sign of the behavioral response directly correlates with the state of the connectivity switch, not with the direction of proton movements or changes in acceptor pK(a). These findings identify a shared fundamental process in the mechanisms of transport and signaling by the rhodopsin family. Furthermore, the effects of mutations in the HtrI subunit of the complex on SRI Schiff base connectivity indicate that the two proteins are tightly coupled to form a single unit that undergoes a concerted conformational transition.
Resumo:
Sensory rhodopsins I and II (SRI and SRII) are visual pigment-like phototaxis receptors in the archaeon Halobacterium salinarum. The receptor proteins each consist of a single polypeptide that folds into 7 $\alpha$-helical membrane-spanning segments forming an internal pocket where the chromophore retinal is bound. They transmit signals to their tightly bound transducer proteins, HtrI and HtrII, respectively, which in turn control a phosphotransfer pathway modulating the flagellar motors. SRI-HtrI mediates attractant responses to orange-light and repellent responses to UV light, while SRII-HtrII mediates repellent response to blue light. Experiments were designed to analyze the molecular processes in the SR-Htr complexes responsible for receptor activation, which previously had been shown by our laboratory to involve proton transfer reactions of the retinylidene Schiff base in the photoactive site, transfer of signals from receptor to transducer, and signaling specificity by the receptor-transducer complex.^ Site-directed mutagenesis and laser-flash kinetic spectroscopy revealed that His-166 in SRI (i) plays a role in the proton transfers both to and from the Schiffbase, either as a structurally critical residue or possibly as a direct participant, (ii) is involved in the modulation of SIU photoreaction kinetics by HtrI, and (iii) modulates the pKa of Asp-76, an important residue in the photoactive site, through a long-distance electrostatic interaction. Computerized cell tracking and motion analysis demonstrated that (iv) His-166 is crucial in phototaxis signaling: a spectrum of substitutions either eliminate signaling or greatly perturb the activation process that produces attractant and repellent signaling states of the receptor.^ The signaling states of SRI are communicated to HtrI, whose oligomeric structure and conformational changes were investigated by engineered sulfhydryl probes. It was found that signaling by the SRI-HtrI complex involves reversible conformational changes within a preexisting HtrI dimer, which is likely accomplished through a slight winding or unwinding of the two HtrT monomers via their loose coiled coil association. To elucidate which domains of the Htr dimers confer specificity for interaction with SRI or SRII, chimeras of HtrI and HtrII were constructed. The only determinant needed for functional and specific interaction with SRI or SRII was found to be the four transmembrane segments of the HtrI or HtrII dimers, respectively. The entire cytoplasmic parts of HtrI and HtrII, which include the functionally important signaling and adaptation domains, were interchangeable.^ These observations support a model in which SRI and SRII undergo conformational changes coupled to light-induced proton transfers in their photoactive sites, and that lateral helix-helix interactions with their cognate transducers' 4-helix bundle in the membrane relay these conformational changes into different states of the Htr proteins which regulate the down-stream phosphotransfer pathway. ^
Resumo:
The molecular complex containing the seven transmembrane helix photoreceptor S&barbelow;ensory R&barbelow;hodopsin I&barbelow; (SRI) and transducer protein HtrI (H&barbelow;alobacterial Transducer for SRI&barbelow;) mediates color-sensitive phototaxis responses in the archaeon Halobacterium salinarum. Orange light causes an attractant response by a one-photon reaction and white light (orange + UV light) a repellent response by a two-photon reaction. Three aspects of SRI-HtrI structure/function and the signal transduction pathway were explored. First, the coupling of HtrI to the photoactive site of SRI was analyzed by mutagenesis and kinetic spectroscopy. Second, SRI-HtrI mutations and suppressors were selected and characterized to elucidate the color-sensing mechanism. Third, the signal relay through the transducer-bound histidine kinase was analyzed using an in vitro reconstitution system with known and newly identified taxis components. ^ Twenty-one mutations on HtrI were introduced by site-directed mutagenesis. Several replacements of charged residues perturbed the photochemical kinetics of SRI which led to the finding of a cluster of residues at the membrane/cytoplasm interface in HtrI electrostatically coupled to the photoactive site of SRI. We found by laser-flash kinetic spectroscopy that the transducer and these residues have specific effects on the light-induced proton transfer between the retinal chromophore and the protein. ^ One of the mutations showed an unusual mutant phenotype we called “inverted” signaling, in which the cell produces a repellent response to normally attractant light. Therefore, this mutant (E56Q of HtrI) had lost the color-discrimination by the SRI-HtrI complex. We used suppressor analysis to better understand the phenotype. Certain suppressors resulted in return of attractant responses to orange light but with inversion of the normally repellent response to white light to an attractant response. To explain this and other results, we formulated the Conformational Shuttling model in which the HtrI-SRI complex is poised in a metastable equilibrium of two conformations shifted in opposite directions by orange and white light. We tested this model by behavioral analysis (computerized cell tracking and motion study) of double mutants of inverting and suppressing mutations and the results confirmed the equilibrium-shift explanation. ^ We developed an in vitro system for measuring the effect of purified transducer on the histidine-kinase CheAH that controls the flagellar motor switch. The rate of kinase autophosphorylation was stimulated >2 fold in the reconstitution of the complete signal transduction system from purified components from H. salinarum. The in vitro assay also showed that the kinase activity was reduced in the absence and in the presence of high levels of linker protein CheWH. (Abstract shortened by UMI.) ^
Resumo:
In Halobacterium salinarum phototaxis is mediated by the visual pigment-like photoreceptors sensory rhodopsin I (SRI) and II (SRII). SRI is a receptor for attractant orange and repellent UV-blue light, and SRII is a receptor for repellent blue-green light, and transmit signals through the membrane-bound transducer proteins HtrI and HtrII, respectively. ^ The primary sequences of HtrI and HtrII predict 2 transmembrane helices (TM1 and TM2) followed by a hydrophilic cytoplasmic domain. HtrII shows an additional large periplasmic domain for chemotactic ligand binding. The cytoplasmic regions are homologous to the adaptation and signaling domains of eubacterial chemotaxis receptors and, like their eubacterial homologs, modulate the transfer of phosphate groups from the histidine protein kinase CheA to the response regulator CheY that in turn controls flagellar motor rotation and the cell's swimming behavior. HtrII and Htrl are dimeric proteins which were predicted to contain carboxylmethylation sites in a 4-helix bundle in their cytoplasmic regions, like eubacterial chemotaxis receptors. ^ The phototaxis transducers of H. salinarum have provided a model for studying receptor/tranducer interaction, adaptation in sensory systems, and the role of membrane molecular complexes in signal transduction. ^ Interaction between the transducer HtrI and the photoreceptor SRI was explored by creating six deletion constructs of HtrI, with progressively shorter cytoplasmic domains. This study confirmed a putative chaperone-like function of HtrI, facilitating membrane insertion or stability of the SRI protein, a phenomenon previously observed in the laboratory, and identified the smallest HtrI fragment containing interaction sites for both the chaperone-like function and SRI photocycle control. The active fragment consisted of the N-terminal 147 residues of the 536-residue HtrI protein, a portion of the molecule predicted to contain the two transmembrane helices and the first ∼20% of the cytoplasmic portion of the protein. ^ Phototaxis and chemotaxis sensory systems adapt to stimuli, thereby signaling only in response to changes in environmental conditions. Observations made in our and in other laboratories and homologies between the halobacterial transducers with the chemoreceptors of enteric bacteria anticipated a role for methylation in adaptation to chemo- and photostimuli. By site directed mutagenesis we identified the methylation sites to be the glutamate pairs E265–E266 in HtrI and E513–E514 in HtrII. Cells containing the unmethylatable transducers are still able to perform phototaxis and adapt to light stimuli. By pulse-chase analysis we found that methanol production from carboxylmethyl group hydrolysis occurs upon specific photo stimulation of unmethylatable HtrI and HtrII and is due to turnover of methyl groups on other transducers. We demonstrated that the turnover in wild-type H. salinarum cells that follows a positive stimulus is CheY-dependent. The CheY-feedback pathway does not require the stimulated transducer to be methylatable and operates globally on other transducers present in the cell. ^ Assembly of signaling molecules into architecturally defined complexes is considered essential in transmission of the signals. The spectroscopic characteristics of SRI were exploited to study the stoichiometric composition in the phototaxis complex SRI-HtrI. A molar ratio of 2.1 HtrI: 1 SRI was obtained, suggesting that only 1 SRI binding site is occupied on the HtrI homodimer. We used gold-immunoelectron microscopy and light fluorescence microscopy to investigate the structural organization and the distribution of other halobacterial transducers. We detected clusters of transducers, usually near the cell's poles, providing a ultrastructural basis for the global effects and intertransducer communication we observe. ^
Resumo:
BACKGROUND International travel contributes to the worldwide spread of multidrug resistant Gram-negative bacteria. Rates of travel-related faecal colonization with extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae vary for different destinations. Especially travellers returning from the Indian subcontinent show high colonization rates. So far, nothing is known about region-specific risk factors for becoming colonized. METHODS An observational prospective multicentre cohort study investigated travellers to South Asia. Before and after travelling, rectal swabs were screened for third-generation cephalosporin- and carbapenem-resistant Enterobacteriaceae. Participants completed questionnaires to identify risk factors for becoming colonized. Covariates were assessed univariately, followed by a multivariate regression. RESULTS Hundred and seventy persons were enrolled, the largest data set on travellers to the Indian subcontinent so far. The acquired colonization rate with ESBL-producing Escherichia coli overall was 69.4% (95% CI 62.1-75.9%), being highest in travellers returning from India (86.8%; 95% CI 78.5-95.0%) and lowest in travellers returning from Sri Lanka (34.7%; 95% CI 22.9-48.7%). Associated risk factors were travel destination, length of stay, visiting friends and relatives, and eating ice cream and pastry. CONCLUSIONS High colonization rates with ESBL-producing Enterobacteriaceae were found in travellers returning from South Asia. Though risk factors were identified, a more common source, i.e. environmental, appears to better explain the high colonization rates.
Resumo:
Lake Towuti (2.5°S, 121.5°E) is a long-lived, tectonic lake located on the Island of Sulawesi, Indonesia, and in the center of the Indo-Pacific warm pool (IPWP). Lake Towuti is connected with upstream lakes Matano and Mahalona through the Mahalona River, which constitutes the largest inlet to the lake. The Mahalona River Delta is prograding into Lake Towuti’s deep northern basin thus exerting significant control on depositional processes in the basin. We combine high-resolution seismic reflection and sedimentological datasets from a 19.8-m-long sediment piston core from the distal edge of this delta to characterize fluctuations in deltaic sedimentation during the past ~29 kyr BP and their relation to climatic change. Our datasets reveal that, in the present, sedimentation is strongly influenced by deposition of laterally transported sediments sourced from the Mahalona River Delta. Variations in the amount of laterally transported sediments, as expressed by coarse fraction amounts in pelagic muds and turbidite recurrence rates and cumulative thicknesses, are primarily a function of lake-level induced delta slope instability and delta progradation into the basin. We infer lowest lake-levels between ~29 and 16, a gradual lake level rise between ~16 and 11, and high lake-levels between ~11 and 0 kyr BP. Periods of highest turbidite deposition, ~26 to 24 and ~18 to 16 kyr BP coincide with Heinrich events 2 and 1, respectively. Our lake-level reconstruction therefore supports previous observations based on geochemical hydroclimate proxies of a very dry last glacial and a wet Holocene in the region, and provides new evidence of millennial-scale variations in moisture balance in the IPWP.
Resumo:
Enamel proteins form a scaffold for growing hydroxyapatite crystals during enamel formation. They are then almost completely degraded during enamel maturation, resulting in a protein content of only 1% (w/v) in mature enamel. Nevertheless, this small amount of remaining proteins has important effects on the mechanical and structural properties of enamel and on the electrostatic properties of its surface. To analyze how enamel proteins affect tooth erosion, human enamel specimens were deproteinated. Surface microhardness (SMH), surface reflection intensity (SRI) and calcium release of both deproteinated and control specimens were monitored while continuously eroding them. The deproteination itself already reduced the initial SMH and SRI of the enamel significantly (p < 0.001 and p < 0.01). During the course of erosion, the progression of all three evaluated parameters differed significantly between the two groups (p < 0.001 for each). The deproteinated enamel lost its SMH and SRI faster, and released more calcium than the control group, but these differences were only significant at later stages of erosion, where not only surface softening but surface loss can be observed. We conclude that enamel proteins have a significant effect on erosion, protecting the enamel and slowing down the progression of erosion when irreversible surface loss starts to occur.
Resumo:
This study aimed at analysing the erosive potential of 30 substances (drinks, candies, and medicaments) on deciduous enamel, and analyse the associated chemical factors with enamel dissolution. We analysed the initial pH, titratable acidity (TA) to pH 5.5, calcium (Ca), inorganic phosphate (Pi), and fluoride (F) concentration, and degree of saturation ((pK -pI)HAP, (pK -pI)FAP, and (pK-pI)CaF2) of all substances. Then, we randomly distributed 300 specimens of human deciduous enamel into 30 groups (n = 10 for each of the substances tested. We also prepared 20 specimens of permanent enamel for the sake of comparison between the two types of teeth, and we tested them in mineral water and Coca-Cola®. In all specimens, we measured surface hardness (VHN: Vickers hardness numbers) and surface reflection intensity (SRI) at baseline (SHbaseline and SRIbaseline), after a total of 2 min (SH2min) and after 4 min (SH4min and SRI4min) erosive challenges (60 ml of substance for 6 enamel samples; 30°C, under constant agitation at 95 rpm). There was no significant difference in SHbaseline between deciduous and permanent enamel. Comparing both teeth, we observed that after the first erosive challenge with Coca-Cola®, a significantly greater hardness loss was seen in deciduous (-90.2±11.3 VHN) than in permanent enamel (-44.3±12.2 VHN; p = 0.007), but no differences between the two types of teeth were observed after two challenges (SH4min). After both erosive challenges, all substances except for mineral water caused a significant loss in relative surface reflectivity intensity, and most substances caused a significant loss in surface hardness. Multiple regression analyses showed that pH, TA and Ca concentration play a significant role in initial erosion of deciduous enamel. We conclude that drinks, foodstuffs and medications commonly consumed by children can cause erosion of deciduous teeth and erosion is mainly associated with pH, titratable acidity and calcium concentration in the solution.
Resumo:
The molecular complex of sensory rhodopsin I (SRI) and its transducer HtrI mediate color-sensitive phototaxis in the archaeon Halobacterium salinarum. Orange light causes an attractant response by a one-photon reaction and white light causes a repellent response by a two-photon reaction. Three aspects of this molecular complex were explored: (i) We determined the stoichiometry of SRI and HtrI to be 2:2 by gene fusion analysis. A SRI-HtrI fusion protein was expressed in H. salinarum and shown to mediate 1-photon and 2-photon phototaxis responses comparable to wild-type complex. Disulfide crosslinking demonstrated that the fusion protein is a homodimer in the membrane. Measurement of photochemical reaction kinetics and pH titration of absorption spectra established that both SRI domains are complexed to HtrI in the fusion protein, and therefore the stoichiometry is 2:2. (ii) Cytoplasmic channel closure of SRI by HtrI, an important aspect of their interaction, was investigated by incremental HtrI truncation. We found that binding of the membrane-embedded portion of HtrI is insufficient for channel closure, whereas cytoplasmic extension of the second HtrI transmembrane helix by 13 residues blocks proton conduction through the channel as well as full-length HtrI. The closure activity is localized to 5 specific residues, each of which incrementally contributes to reduction of proton conductivity. Moreover, these same residues in the dark incrementally and proportionally increase the pKa of the Asp76 counterion to the protonated Schiff base chromophore. We conclude that this critical region of HtrI alters the dark conformation of SRI as well as light-induced channel opening. (iii) We developed a procedure for reconstituting HtrI-free SRI and the SRI/HtrI complex into liposomes, which exhibit photocycles with opened and closed cytoplasmic channels, respectively, as in the membrane. This opens the way for study of the light-induced conformational change and the interaction in vitro by fluorescence and spin-labeling. Single-cysteine mutations were introduced into helix F of SRI, labeled with a nitroxide spin probe and a fluorescence probe, reconstituted into proteoliposomes, and light-induced conformational changes detected in the complex. The probe signals can now be used as the readout of signaling to analyze mutants and the kinetics of signal relay. ^