899 resultados para Spontaneous locomotor activity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuronal operations associated with the top-down control process of shifting attention from one locus to another involve a network of cortical regions, and their influence is deemed fundamental to visual perception. However, the extent and nature of these operations within primary visual areas are unknown. In this paper, we used magnetoencephalography (MEG) in combination with magnetic resonance imaging (MRI) to determine whether, prior to the onset of a visual stimulus, neuronal activity within early visual cortex is affected by covert attentional shifts. Time/frequency analyses were used to identify the nature of this activity. Our results show that shifting attention towards an expected visual target results in a late-onset (600 ms postcue onset) depression of alpha activity which persists until the appearance of the target. Independent component analysis (ICA) and dipolar source modeling confirmed that the neuronal changes we observed originated from within the calcarine cortex. Our results further show that the amplitude changes in alpha activity were induced not evoked (i.e., not phase-locked to the cued attentional task). We argue that the decrease in alpha prior to the onset of the target may serve to prime the early visual cortex for incoming sensory information. We conclude that attentional shifts affect activity within the human calcarine cortex by altering the amplitude of spontaneous alpha rhythms and that subsequent modulation of visual input with attentional engagement follows as a consequence of these localized changes in oscillatory activity. © 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At rest, the primary motor cortex (M1) exhibits spontaneous neuronal network oscillations in the beta (15–30 Hz) frequency range, mediated by inhibitory interneuron drive via GABA-A receptors. However, questions remain regarding the neuropharmacological basis of movement related oscillatory phenomena, such as movement related beta desynchronisation (MRBD), post-movement beta rebound (PMBR) and movement related gamma synchronisation (MRGS). To address this, we used magnetoencephalography (MEG) to study the movement related oscillatory changes in M1 cortex of eight healthy participants, following administration of the GABA-A modulator diazepam. Results demonstrate that, contrary to initial hypotheses, neither MRGS nor PMBR appear to be GABA-A dependent, whilst the MRBD is facilitated by increased GABAergic drive. These data demonstrate that while movement-related beta changes appear to be dependent upon spontaneous beta oscillations, they occur independently of one other. Crucially, MRBD is a GABA-A mediated process, offering a possible mechanism by which motor function may be modulated. However, in contrast, the transient increase in synchronous power observed in PMBR and MRGS appears to be generated by a non-GABA-A receptor mediated process; the elucidation of which may offer important insights into motor processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuous theta burst stimulation (cTBS) is a repetitive transcranial magnetic stimulation protocol that can inhibithumanmotor cortex (M1) excitability and impair movement for ≤1 h. While offering valuable insights into brain function and potential therapeutic benefits, these neuroplastic effects are highly variable between individuals. The source of this variability, and the electrophysiological mechanisms underlying the inhibitory after-effects, are largely unknown. In this regard, oscillatory activity at beta frequency (15-35 Hz) is of particular interest as it is elevated in motor disorders such as Parkinson's disease and modulated during the generation of movements. Here, we used a source-level magnetoencephalography approach to investigate the hypothesis that the presence of neuroplastic effects following cTBS is associated with concurrent changes in oscillatory M1 beta activity. M1 cortices were localized with a synthetic aperture magnetometry beamforming analysis of visually cued index finger movements. Virtual electrode analysis was used to reconstruct the spontaneous and movement-related oscillatory activity in bilateral M1 cortices, before and from 10 to 45 min after cTBS. We demonstrate that 40 s of cTBS applied over left M1 reduced corticospinal excitability in the right index finger of 8/16 participants. In these responder participants only, cTBS increased the power of the spontaneous beta oscillations in stimulated M1 and delayed reaction times in the contralateral index finger. No further changes were observed in the latency or power of movement-related beta oscillations. These data provide insights into the electrophysiological mechanisms underlying cTBS-mediated impairment of motor function and demonstrate the association between spontaneous oscillatory beta activity in M1 and the inhibition of motor function. © 2013 the authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The entorhinal cortex (EC) controls hippocampal input and output, playing major roles in memory and spatial navigation. Different layers of the EC subserve different functions and a number of studies have compared properties of neurones across layers. We have studied synaptic inhibition and excitation in EC neurones, and we have previously compared spontaneous synaptic release of glutamate and GABA using patch clamp recordings of synaptic currents in principal neurones of layers II (L2) and V (L5). Here, we add comparative studies in layer III (L3). Such studies essentially look at neuronal activity from a presynaptic viewpoint. To correlate this with the postsynaptic consequences of spontaneous transmitter release, we have determined global postsynaptic conductances mediated by the two transmitters, using a method to estimate conductances from membrane potential fluctuations. We have previously presented some of this data for L3 and now extend to L2 and L5. Inhibition dominates excitation in all layers but the ratio follows a clear rank order (highest to lowest) of L2>L3>L5. The variance of the background conductances was markedly higher for excitation and inhibition in L2 compared to L3 or L5. We also show that induction of synchronized network epileptiform activity by blockade of GABA inhibition reveals a relative reluctance of L2 to participate in such activity. This was associated with maintenance of a dominant background inhibition in L2, whereas in L3 and L5 the absolute level of inhibition fell below that of excitation, coincident with the appearance of synchronized discharges. Further experiments identified potential roles for competition for bicuculline by ambient GABA at the GABAA receptor, and strychnine-sensitive glycine receptors in residual inhibition in L2. We discuss our results in terms of control of excitability in neuronal subpopulations of EC neurones and what these may suggest for their functional roles. © 2014 Greenhill et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Astrocytes in the rat thalamus display spontaneous [Ca2+]i oscillations that are due to intracellular release, but are not dependent on neuronal activity. In this study we have investigated the mechanisms involved in these spontaneous [Ca2+]i oscillations using slices loaded with Fluo-4 AM (5 μM) and confocal microscopy. Bafilomycin A1 incubation had no effect on the number of spontaneous [Ca2+]i oscillations indicating that they were not dependent on vesicular neurotransmitter release. Oscillations were also unaffected by ryanodine. Phospholipase C (PLC) inhibition decreased the number of astrocytes responding to metabotropic glutamate receptor (mGluR) activation but did not reduce the number of spontaneously active astrocytes, indicating that [Ca2+]i increases are not due to membrane-coupled PLC activation. Spontaneous [Ca2+]i increases were abolished by an IP3 receptor antagonist, whilst the protein kinase C (PKC) inhibitor chelerythrine chloride prolonged their duration, indicating a role for PKC and inositol 1,4,5,-triphosphate receptor activation. BayK8644 increased the number of astrocytes exhibiting [Ca2+]i oscillations, and prolonged the responses to mGluR activation, indicating a possible effect on store-operated Ca2+ entry. Increasing [Ca2+]o increased the number of spontaneously active astrocytes and the number of transients exhibited by each astrocyte. Inhibition of the endoplasmic reticulum Ca2+ ATPase by cyclopiazonic acid also induced [Ca2+]i transients in astrocytes indicating a role for cytoplasmic Ca2+ in the induction of spontaneous oscillations. Incubation with 20 μM Fluo-4 reduced the number of astrocytes exhibiting spontaneous increases. This study indicates that Ca2+ has a role in triggering Ca2+ release from an inositol 1,4,5,-triphosphate sensitive store in astrocytes during the generation of spontaneous [Ca2+]i oscillations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Astrocytes respond to chemical, electrical and mechanical stimuli with transient increases in intracellular calcium concentration ([Ca2+]i). We now show that astrocytes in situ display intrinsic [Ca2+]i oscillations that are not driven by neuronal activity. These spontaneous astrocytic oscillations can propagate as waves to neighboring astrocytes and trigger slowly decaying NMDA receptor-mediated inward currents in neurons located along the wave path. These findings show that astrocytes in situ can act as a primary source for generating neuronal activity in the mammalian central nervous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The entorhinal cortex (EC) is a key brain area controlling both hippocampal input and output via neurones in layer II and layer V, respectively. It is also a pivotal area in the generation and propagation of epilepsies involving the temporal lobe. We have previously shown that within the network of the EC, neurones in layer V are subject to powerful synaptic excitation but weak inhibition, whereas the reverse is true in layer II. The deep layers are also highly susceptible to acutely provoked epileptogenesis. Considerable evidence now points to a role of spontaneous background synaptic activity in control of neuronal, and hence network, excitability. In the present article we describe results of studies where we have compared background release of the excitatory transmitter, glutamate, and the inhibitory transmitter, GABA, in the two layers, the role of this background release in the balance of excitability, and its control by presynaptic auto- and heteroreceptors on presynaptic terminals. © The Physiological Society 2004.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pattern classification of human brain activity provides unique insight into the neural underpinnings of diverse mental states. These multivariate tools have recently been used within the field of affective neuroscience to classify distributed patterns of brain activation evoked during emotion induction procedures. Here we assess whether neural models developed to discriminate among distinct emotion categories exhibit predictive validity in the absence of exteroceptive emotional stimulation. In two experiments, we show that spontaneous fluctuations in human resting-state brain activity can be decoded into categories of experience delineating unique emotional states that exhibit spatiotemporal coherence, covary with individual differences in mood and personality traits, and predict on-line, self-reported feelings. These findings validate objective, brain-based models of emotion and show how emotional states dynamically emerge from the activity of separable neural systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autoimmune hepatitis (AIH) is a disease of unknown aetiology with drug-induced AIH being the most complex and not fully understood type. We present the case of a 57-year-old female patient with acute icteric hepatitis after interferon-beta-1b (IFNβ-1b) administration for multiple sclerosis (MS). Based on liver autoimmune serology, histology and appropriate exclusion of other liver diseases, a diagnosis of AIH-related cirrhosis was established. Following discontinuation of IFNβ-1b, a complete resolution of biochemical activity indices was observed and the patient remained untreated on her own decision. However, 3 years later, after a course of intravenous methylprednisolone for MS, a new acute transaminase flare was recorded which subsided again spontaneously after 3 weeks. Liver biopsy and elastography showed significant fibrosis regression (F2 fibrosis). To our knowledge, this is the first report showing spontaneous cirrhosis regression in an IFNβ-1b-induced AIH-like syndrome following drug withdrawal, suggesting that cirrhosis might be reversible if the offending fibrogenic stimulus is withdrawn.