946 resultados para Spectral graph theory
Resumo:
The fabrication and characterization of long-period gratings (LPGs) in fiber tapers is presented alongside supporting theory. The devices possess a high sensitivity to the index of aqueous solutions due to an observed spectral bifurcation effect, yielding a limiting index resolution of ±8.5×10-5 for solutions with an index in the range 1.330-1.335.
Resumo:
We present a mean field theory of code-division multiple access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems.
Resumo:
The fabrication and characterization of long-period gratings (LPGs) in fiber tapers is presented alongside supporting theory. The devices possess a high sensitivity to the index of aqueous solutions due to an observed spectral bifurcation effect, yielding a limiting index resolution of ±8.5 × 10-5 for solutions with an index in the range 1.330-1.335. © 2006 IEEE.
Resumo:
We have been investigating the cryptographical properties of in nite families of simple graphs of large girth with the special colouring of vertices during the last 10 years. Such families can be used for the development of cryptographical algorithms (on symmetric or public key modes) and turbocodes in error correction theory. Only few families of simple graphs of large unbounded girth and arbitrarily large degree are known. The paper is devoted to the more general theory of directed graphs of large girth and their cryptographical applications. It contains new explicit algebraic constructions of in finite families of such graphs. We show that they can be used for the implementation of secure and very fast symmetric encryption algorithms. The symbolic computations technique allow us to create a public key mode for the encryption scheme based on algebraic graphs.
Resumo:
In this paper, we use the quantum Jensen-Shannon divergence as a means to establish the similarity between a pair of graphs and to develop a novel graph kernel. In quantum theory, the quantum Jensen-Shannon divergence is defined as a distance measure between quantum states. In order to compute the quantum Jensen-Shannon divergence between a pair of graphs, we first need to associate a density operator with each of them. Hence, we decide to simulate the evolution of a continuous-time quantum walk on each graph and we propose a way to associate a suitable quantum state with it. With the density operator of this quantum state to hand, the graph kernel is defined as a function of the quantum Jensen-Shannon divergence between the graph density operators. We evaluate the performance of our kernel on several standard graph datasets from bioinformatics. We use the Principle Component Analysis (PCA) on the kernel matrix to embed the graphs into a feature space for classification. The experimental results demonstrate the effectiveness of the proposed approach. © 2013 Springer-Verlag.
Resumo:
In this work, we introduce the periodic nonlinear Fourier transform (PNFT) method as an alternative and efficacious tool for compensation of the nonlinear transmission effects in optical fiber links. In the Part I, we introduce the algorithmic platform of the technique, describing in details the direct and inverse PNFT operations, also known as the inverse scattering transform for periodic (in time variable) nonlinear Schrödinger equation (NLSE). We pay a special attention to explaining the potential advantages of the PNFT-based processing over the previously studied nonlinear Fourier transform (NFT) based methods. Further, we elucidate the issue of the numerical PNFT computation: we compare the performance of four known numerical methods applicable for the calculation of nonlinear spectral data (the direct PNFT), in particular, taking the main spectrum (utilized further in Part II for the modulation and transmission) associated with some simple example waveforms as the quality indicator for each method. We show that the Ablowitz-Ladik discretization approach for the direct PNFT provides the best performance in terms of the accuracy and computational time consumption.
Resumo:
Spectral albedo has been measured at Dome C since December 2012 in the visible and near infrared (400 - 1050 nm) at sub-hourly resolution using a home-made spectral radiometer. Superficial specific surface area (SSA) has been estimated by fitting the observed albedo spectra to the analytical Asymptotic Approximation Radiative Transfer theory (AART). The dataset includes fully-calibrated albedo and SSA that pass several quality checks as described in the companion article. Only data for solar zenith angles less than 75° have been included, which theoretically spans the period October-March. In addition, to correct for residual errors still affecting data after the calibration, especially at the solar zenith angles higher than 60°, we produced a higher quality albedo time-series as follows: In the SSA estimation process described in the companion paper, a scaling coefficient A between the observed albedo and the theoretical model predictions was introduced to cope with these errors. This coefficient thus provides a first order estimate of the residual error. By dividing the albedo by this coefficient, we produced the "scaled fully-calibrated albedo". We strongly recommend to use the latter for most applications because it generally remains in the physical range 0-1. The former albedo is provided for reference to the companion paper and because it does not depend on the SSA estimation process and its underlying assumptions.
Resumo:
Using data obtained by the high-resolution CRisp Imaging SpectroPolarimeter instrument on the Swedish 1 m Solar Telescope, we investigate the dynamics and stability of quiet-Sun chromospheric jets observed at the disk center. Small-scale features, such as rapid redshifted and blueshifted excursions, appearing as high-peed jets in the wings of the Hα line, are characterized by short lifetimes and rapid fading without any descending behavior. To study the theoretical aspects of their stability without considering their formation mechanism, we model chromospheric jets as twisted magnetic flux tubes moving along their axis, and use the ideal linear incompressible magnetohydrodynamic approximation to derive the governing dispersion equation. Analytical solutions of the dispersion equation indicate that this type of jet is unstable to Kelvin–Helmholtz instability (KHI), with a very short (few seconds) instability growth time at high upflow speeds. The generated vortices and unresolved turbulent flows associated with the KHI could be observed as a broadening of chromospheric spectral lines. Analysis of the Hα line profiles shows that the detected structures have enhanced line widths with respect to the background. We also investigate the stability of a larger-scale Hα jet that was ejected along the line of sight. Vortex-like features, rapidly developing around the jet’s boundary, are considered as evidence of the KHI. The analysis of the energy equation in the partially ionized plasma shows that ion–neutral collisions may lead to fast heating of the KH vortices over timescales comparable to the lifetime of chromospheric jets.
Resumo:
We study the relations of shift equivalence and strong shift equivalence for matrices over a ring $\mathcal{R}$, and establish a connection between these relations and algebraic K-theory. We utilize this connection to obtain results in two areas where the shift and strong shift equivalence relations play an important role: the study of finite group extensions of shifts of finite type, and the Generalized Spectral Conjectures of Boyle and Handelman for nonnegative matrices over subrings of the real numbers. We show the refinement of the shift equivalence class of a matrix $A$ over a ring $\mathcal{R}$ by strong shift equivalence classes over the ring is classified by a quotient $NK_{1}(\mathcal{R}) / E(A,\mathcal{R})$ of the algebraic K-group $NK_{1}(\calR)$. We use the K-theory of non-commutative localizations to show that in certain cases the subgroup $E(A,\mathcal{R})$ must vanish, including the case $A$ is invertible over $\mathcal{R}$. We use the K-theory connection to clarify the structure of algebraic invariants for finite group extensions of shifts of finite type. In particular, we give a strong negative answer to a question of Parry, who asked whether the dynamical zeta function determines up to finitely many topological conjugacy classes the extensions by $G$ of a fixed mixing shift of finite type. We apply the K-theory connection to prove the equivalence of a strong and weak form of the Generalized Spectral Conjecture of Boyle and Handelman for primitive matrices over subrings of $\mathbb{R}$. We construct explicit matrices whose class in the algebraic K-group $NK_{1}(\mathcal{R})$ is non-zero for certain rings $\mathcal{R}$ motivated by applications. We study the possible dynamics of the restriction of a homeomorphism of a compact manifold to an isolated zero-dimensional set. We prove that for $n \ge 3$ every compact zero-dimensional system can arise as an isolated invariant set for a homeomorphism of a compact $n$-manifold. In dimension two, we provide obstructions and examples.
Resumo:
In design and manufacturing, mesh segmentation is required for FACE construction in boundary representation (BRep), which in turn is central for featurebased design, machining, parametric CAD and reverse engineering, among others -- Although mesh segmentation is dictated by geometry and topology, this article focuses on the topological aspect (graph spectrum), as we consider that this tool has not been fully exploited -- We preprocess the mesh to obtain a edgelength homogeneous triangle set and its Graph Laplacian is calculated -- We then produce a monotonically increasing permutation of the Fiedler vector (2nd eigenvector of Graph Laplacian) for encoding the connectivity among part feature submeshes -- Within the mutated vector, discontinuities larger than a threshold (interactively set by a human) determine the partition of the original mesh -- We present tests of our method on large complex meshes, which show results which mostly adjust to BRep FACE partition -- The achieved segmentations properly locate most manufacturing features, although it requires human interaction to avoid over segmentation -- Future work includes an iterative application of this algorithm to progressively sever features of the mesh left from previous submesh removals