918 resultados para Spatial analysis statistics -- Data processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Irish State has consistently reduced its production of publicly accessible disease / mortality maps over the last fifty years. State health statistics, and the small number of disease / mortality maps that have been produced in official publications, show a declining level of detail and are routinely out of date. Following a review of the production of disease / mortality maps in Ireland by the State and allied health agencies, two reasons are suggested for this decline. The first explanation relates to spatial inequalities in healthcare provision and to the absence of a health funding formulae in Ireland. The second explanation focuses on the potential politicisation of spatial inequalities in health status. Researchers in these fields are urged to disseminate information widely on spatial inequalities in healthcare provision, healthcare access and health status, both within and outside of the academic literature. Researchers in these fields are also urged to adopt an advocacy role on these issues, or to develop strategic alliances with such advocates.����

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The automatic diagnostic discrimination is an application of artificial intelligence techniques that can solve clinical cases based on imaging. Diffuse liver diseases are diseases of wide prominence in the population and insidious course, yet early in its progression. Early and effective diagnosis is necessary because many of these diseases progress to cirrhosis and liver cancer. The usual technique of choice for accurate diagnosis is liver biopsy, an invasive and not without incompatibilities one. It is proposed in this project an alternative non-invasive and free of contraindications method based on liver ultrasonography. The images are digitized and then analyzed using statistical techniques and analysis of texture. The results are validated from the pathology report. Finally, we apply artificial intelligence techniques as Fuzzy k-Means or Support Vector Machines and compare its significance to the analysis Statistics and the report of the clinician. The results show that this technique is significantly valid and a promising alternative as a noninvasive diagnostic chronic liver disease from diffuse involvement. Artificial Intelligence classifying techniques significantly improve the diagnosing discrimination compared to other statistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compositional data naturally arises from the scientific analysis of the chemicalcomposition of archaeological material such as ceramic and glass artefacts. Data of thistype can be explored using a variety of techniques, from standard multivariate methodssuch as principal components analysis and cluster analysis, to methods based upon theuse of log-ratios. The general aim is to identify groups of chemically similar artefactsthat could potentially be used to answer questions of provenance.This paper will demonstrate work in progress on the development of a documentedlibrary of methods, implemented using the statistical package R, for the analysis ofcompositional data. R is an open source package that makes available very powerfulstatistical facilities at no cost. We aim to show how, with the aid of statistical softwaresuch as R, traditional exploratory multivariate analysis can easily be used alongside, orin combination with, specialist techniques of compositional data analysis.The library has been developed from a core of basic R functionality, together withpurpose-written routines arising from our own research (for example that reported atCoDaWork'03). In addition, we have included other appropriate publicly availabletechniques and libraries that have been implemented in R by other authors. Availablefunctions range from standard multivariate techniques through to various approaches tolog-ratio analysis and zero replacement. We also discuss and demonstrate a smallselection of relatively new techniques that have hitherto been little-used inarchaeometric applications involving compositional data. The application of the libraryto the analysis of data arising in archaeometry will be demonstrated; results fromdifferent analyses will be compared; and the utility of the various methods discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the application of a PCA analysis on categorical data prior to diagnose a patients data set using a Case-Based Reasoning (CBR) system. The particularity is that the standard PCA techniques are designed to deal with numerical attributes, but our medical data set contains many categorical data and alternative methods as RS-PCA are required. Thus, we propose to hybridize RS-PCA (Regular Simplex PCA) and a simple CBR. Results show how the hybrid system produces similar results when diagnosing a medical data set, that the ones obtained when using the original attributes. These results are quite promising since they allow to diagnose with less computation effort and memory storage

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Solexa/Illumina short-read ultra-high throughput DNA sequencing technology produces millions of short tags (up to 36 bases) by parallel sequencing-by-synthesis of DNA colonies. The processing and statistical analysis of such high-throughput data poses new challenges; currently a fair proportion of the tags are routinely discarded due to an inability to match them to a reference sequence, thereby reducing the effective throughput of the technology. RESULTS: We propose a novel base calling algorithm using model-based clustering and probability theory to identify ambiguous bases and code them with IUPAC symbols. We also select optimal sub-tags using a score based on information content to remove uncertain bases towards the ends of the reads. CONCLUSION: We show that the method improves genome coverage and number of usable tags as compared with Solexa's data processing pipeline by an average of 15%. An R package is provided which allows fast and accurate base calling of Solexa's fluorescence intensity files and the production of informative diagnostic plots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of simple and multiple correspondence analysis is well-established in socialscience research for understanding relationships between two or more categorical variables.By contrast, canonical correspondence analysis, which is a correspondence analysis with linearrestrictions on the solution, has become one of the most popular multivariate techniques inecological research. Multivariate ecological data typically consist of frequencies of observedspecies across a set of sampling locations, as well as a set of observed environmental variablesat the same locations. In this context the principal dimensions of the biological variables aresought in a space that is constrained to be related to the environmental variables. Thisrestricted form of correspondence analysis has many uses in social science research as well,as is demonstrated in this paper. We first illustrate the result that canonical correspondenceanalysis of an indicator matrix, restricted to be related an external categorical variable, reducesto a simple correspondence analysis of a set of concatenated (or stacked ) tables. Then weshow how canonical correspondence analysis can be used to focus on, or partial out, aparticular set of response categories in sample survey data. For example, the method can beused to partial out the influence of missing responses, which usually dominate the results of amultiple correspondence analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, kernel-based Machine Learning methods have gained great popularity in many data analysis and data mining fields: pattern recognition, biocomputing, speech and vision, engineering, remote sensing etc. The paper describes the use of kernel methods to approach the processing of large datasets from environmental monitoring networks. Several typical problems of the environmental sciences and their solutions provided by kernel-based methods are considered: classification of categorical data (soil type classification), mapping of environmental and pollution continuous information (pollution of soil by radionuclides), mapping with auxiliary information (climatic data from Aral Sea region). The promising developments, such as automatic emergency hot spot detection and monitoring network optimization are discussed as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polistine wasps are important in Neotropical ecosystems due to their ubiquity and diversity. Inventories have not adequately considered spatial attributes of collected specimens. Spatial data on biodiversity are important for study and mitigation of anthropogenic impacts over natural ecosystems and for protecting species. We described and analyzed local-scale spatial patterns of collecting records of wasp species, as well as spatial variation of diversity descriptors in a 2500-hectare area of an Amazon forest in Brazil. Rare species comprised the largest fraction of the fauna. Close range spatial effects were detected for most of the more common species, with clustering of presence-data at short distances. Larger spatial lag effects could also be identified in some species, constituting probably cases of exogenous autocorrelation and candidates for explanations based on environmental factors. In a few cases, significant or near significant correlations were found between five species (of Agelaia, Angiopolybia, and Mischocyttarus) and three studied environmental variables: distance to nearest stream, terrain altitude, and the type of forest canopy. However, association between these factors and biodiversity variables were generally low. When used as predictors of polistine richness in a linear multiple regression, only the coefficient for the forest canopy variable resulted significant. Some level of prediction of wasp diversity variables can be attained based on environmental variables, especially vegetation structure. Large-scale landscape and regional studies should be scheduled to address this issue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MicroRNAs (miRs) are involved in the pathogenesis of several neoplasms; however, there are no data on their expression patterns and possible roles in adrenocortical tumors. Our objective was to study adrenocortical tumors by an integrative bioinformatics analysis involving miR and transcriptomics profiling, pathway analysis, and a novel, tissue-specific miR target prediction approach. Thirty-six tissue samples including normal adrenocortical tissues, benign adenomas, and adrenocortical carcinomas (ACC) were studied by simultaneous miR and mRNA profiling. A novel data-processing software was used to identify all predicted miR-mRNA interactions retrieved from PicTar, TargetScan, and miRBase. Tissue-specific target prediction was achieved by filtering out mRNAs with undetectable expression and searching for mRNA targets with inverse expression alterations as their regulatory miRs. Target sets and significant microarray data were subjected to Ingenuity Pathway Analysis. Six miRs with significantly different expression were found. miR-184 and miR-503 showed significantly higher, whereas miR-511 and miR-214 showed significantly lower expression in ACCs than in other groups. Expression of miR-210 was significantly lower in cortisol-secreting adenomas than in ACCs. By calculating the difference between dCT(miR-511) and dCT(miR-503) (delta cycle threshold), ACCs could be distinguished from benign adenomas with high sensitivity and specificity. Pathway analysis revealed the possible involvement of G2/M checkpoint damage in ACC pathogenesis. To our knowledge, this is the first report describing miR expression patterns and pathway analysis in sporadic adrenocortical tumors. miR biomarkers may be helpful for the diagnosis of adrenocortical malignancy. This tissue-specific target prediction approach may be used in other tumors too.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-centre data repositories like the Alzheimer's Disease Neuroimaging Initiative (ADNI) offer a unique research platform, but pose questions concerning comparability of results when using a range of imaging protocols and data processing algorithms. The variability is mainly due to the non-quantitative character of the widely used structural T1-weighted magnetic resonance (MR) images. Although the stability of the main effect of Alzheimer's disease (AD) on brain structure across platforms and field strength has been addressed in previous studies using multi-site MR images, there are only sparse empirically-based recommendations for processing and analysis of pooled multi-centre structural MR data acquired at different magnetic field strengths (MFS). Aiming to minimise potential systematic bias when using ADNI data we investigate the specific contributions of spatial registration strategies and the impact of MFS on voxel-based morphometry in AD. We perform a whole-brain analysis within the framework of Statistical Parametric Mapping, testing for main effects of various diffeomorphic spatial registration strategies, of MFS and their interaction with disease status. Beyond the confirmation of medial temporal lobe volume loss in AD, we detect a significant impact of spatial registration strategy on estimation of AD related atrophy. Additionally, we report a significant effect of MFS on the assessment of brain anatomy (i) in the cerebellum, (ii) the precentral gyrus and (iii) the thalamus bilaterally, showing no interaction with the disease status. We provide empirical evidence in support of pooling data in multi-centre VBM studies irrespective of disease status or MFS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Few examples of habitat-modelling studies of rare and endangered species exist in the literature, although from a conservation perspective predicting their distribution would prove particularly useful. Paucity of data and lack of valid absences are the probable reasons for this shortcoming. Analytic solutions to accommodate the lack of absence include the ecological niche factor analysis (ENFA) and the use of generalized linear models (GLM) with simulated pseudo-absences. 2. In this study we tested a new approach to generating pseudo-absences, based on a preliminary ENFA habitat suitability (HS) map, for the endangered species Eryngium alpinum. This method of generating pseudo-absences was compared with two others: (i) use of a GLM with pseudo-absences generated totally at random, and (ii) use of an ENFA only. 3. The influence of two different spatial resolutions (i.e. grain) was also assessed for tackling the dilemma of quality (grain) vs. quantity (number of occurrences). Each combination of the three above-mentioned methods with the two grains generated a distinct HS map. 4. Four evaluation measures were used for comparing these HS maps: total deviance explained, best kappa, Gini coefficient and minimal predicted area (MPA). The last is a new evaluation criterion proposed in this study. 5. Results showed that (i) GLM models using ENFA-weighted pseudo-absence provide better results, except for the MPA value, and that (ii) quality (spatial resolution and locational accuracy) of the data appears to be more important than quantity (number of occurrences). Furthermore, the proposed MPA value is suggested as a useful measure of model evaluation when used to complement classical statistical measures. 6. Synthesis and applications. We suggest that the use of ENFA-weighted pseudo-absence is a possible way to enhance the quality of GLM-based potential distribution maps and that data quality (i.e. spatial resolution) prevails over quantity (i.e. number of data). Increased accuracy of potential distribution maps could help to define better suitable areas for species protection and reintroduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the application of a PCA analysis on categorical data prior to diagnose a patients data set using a Case-Based Reasoning (CBR) system. The particularity is that the standard PCA techniques are designed to deal with numerical attributes, but our medical data set contains many categorical data and alternative methods as RS-PCA are required. Thus, we propose to hybridize RS-PCA (Regular Simplex PCA) and a simple CBR. Results show how the hybrid system produces similar results when diagnosing a medical data set, that the ones obtained when using the original attributes. These results are quite promising since they allow to diagnose with less computation effort and memory storage

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: PCR has the potential to detect and precisely quantify specific DNA sequences, but it is not yet often used as a fully quantitative method. A number of data collection and processing strategies have been described for the implementation of quantitative PCR. However, they can be experimentally cumbersome, their relative performances have not been evaluated systematically, and they often remain poorly validated statistically and/or experimentally. In this study, we evaluated the performance of known methods, and compared them with newly developed data processing strategies in terms of resolution, precision and robustness. RESULTS: Our results indicate that simple methods that do not rely on the estimation of the efficiency of the PCR amplification may provide reproducible and sensitive data, but that they do not quantify DNA with precision. Other evaluated methods based on sigmoidal or exponential curve fitting were generally of both poor resolution and precision. A statistical analysis of the parameters that influence efficiency indicated that it depends mostly on the selected amplicon and to a lesser extent on the particular biological sample analyzed. Thus, we devised various strategies based on individual or averaged efficiency values, which were used to assess the regulated expression of several genes in response to a growth factor. CONCLUSION: Overall, qPCR data analysis methods differ significantly in their performance, and this analysis identifies methods that provide DNA quantification estimates of high precision, robustness and reliability. These methods allow reliable estimations of relative expression ratio of two-fold or higher, and our analysis provides an estimation of the number of biological samples that have to be analyzed to achieve a given precision.