923 resultados para Soybean biodiesels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel extensin gene has been identified in soybean (Glycine max L.) that encodes a hydroxyproline-rich glycoprotein (SbHRGP3) with two different domains. In this study expression of SbHRGP3 was investigated during soybean root development. SbHRGP was expressed in roots of mature plants, as well as seedlings, and showed a distinct pattern of expression during root development. The expression of SbHRGP3 increased gradually during root development of seedlings and reached a maximum while the secondary roots were maturing. The maximum expression level was contributed mainly by the secondary roots rather than by the primary root. Furthermore, expression of SbHRGP3 was preferentially detected in the regions undergoing maturation of the primary and secondary roots. These results imply that the expression of SbHRGP3 is regulated in an organ- and development-specific manner and that in soybean SbHRGP3 expression may be required for root maturation, presumably for the cessation of root elongation. Wounding and sucrose in combination enhanced expression of SbHRGP3 in roots, whereas both wounding and sucrose were required for the expression of SbHRGP3 in leaves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In extracts of immature soybean (Glycine max [L.] Merr.) seeds inositol tetrakisphosphate was formed from [3H]inositol 1,3,4-trisphosphate but not from [3H]inositol 1,4,5-trisphosphate. Inositol 1,3,4-trisphosphate kinase was purified to a specific activity of 3.55 min−1 mg−1 by polyethylenimine clarification and anion-exchange chromatography. The partially purified enzyme converted [3H]inositol 1,3,4-trisphosphate to inositol 1,3,4,5-tetrakisphosphate as the major product and inositol 1,3,4,6- and/or 1,2,3,4-tetrakisphosphate as the minor product. Subsequent experiments revealed a separate inositol 1,3,4,5-tetrakisphosphate 6-kinase activity, which could link these enzymes to inositol hexakisphosphate synthesis via the previously reported inositol 1,3,4,5,6-pentakisphosphate 2-kinase. The apparent Km values for inositol 1,3,4-trisphosphate kinase were 200 ± 0 nm for inositol 1,3,4-trisphosphate and 171 ± 4 μm for ATP, and the reaction was not reversible. The kinetics were such that no activity could be detected using unlabeled inositol 1,3,4-trisphosphate and [γ-32P]ATP, which suggested that other kinases may have been observed when less purified fractions were incubated with radiolabeled ATP. Inositol 1,3,4-trisphosphate kinase was nonspecifically inhibited more than 80% by various inositol polyphosphates at a concentration of 100 μm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly purified preparation of uridine 5′-diphosphate (UDP)-glucose (Glc) dehydrogenase (DH; EC 1.1.1.22) has been characterized from soybean (Glycine max L.) nodules. The enzyme had native and subunit molecular masses of approximately 272 and 50 kD, respectively. UDP-Glc DH displayed typical hyperbolic substrate kinetics and had Km values for UDP-Glc and NAD+ of 0.05 and 0.12 mm, respectively. Thymidine 5′-diphosphate-Glc and UDP-galactose could replace UDP-Glc as the sugar nucleotide substrate to some extent, but the enzyme had no activity with NADP+. Soybean nodule UDP-Glc DH was labile in the absence of NAD+ and was inhibited by a heat-stable, low-molecular-mass solute in crude extracts of soybean nodules. UDP-Glc DH was also isolated from developing soybean seeds and shoots of 5-d-old wheat and canola seedlings and was shown to have similar affinities for UDP-Glc and NAD+ as those of the soybean nodule enzyme. UDP-Glc DH from all of these sources was most active in young, rapidly growing tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequences of cloned resistance genes from a wide range of plant taxa reveal significant similarities in sequence homology and structural motifs. This is observed among genes conferring resistance to viral, bacterial, and fungal pathogens. In this study, oligonucleotide primers designed for conserved sequences from coding regions of disease resistance genes N (tobacco), RPS2 (Arabidopsis) and L6 (flax) were used to amplify related sequences from soybean [Glycine max (L.) Merr.]. Sequencing of amplification products indicated that at least nine classes of resistance gene analogs (RGAs) were detected. Genetic mapping of members of these classes located them to eight different linkage groups. Several RGA loci mapped near known resistance genes. A bacterial artificial chromosome library of soybean DNA was screened using primers and probes specific for eight RGA classes and clones were identified containing sequences unique to seven classes. Individual bacterial artificial chromosomes contained 2-10 members of single RGA classes. Clustering and sequence similarity of members of RGA classes suggests a common process in their evolution. Our data indicate that it may be possible to use sequence homologies from conserved motifs of cloned resistance genes to identify candidate resistance loci from widely diverse plant taxa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tobacco N and Arabidopsis RPS2 genes, among several recently cloned disease-resistance genes, share highly conserved structure, a nucleotide-binding site (NBS). Using degenerate oligonucleotide primers for the NBS region of N and RPS2, we have amplified and cloned the NBS sequences from soybean. Each of these PCR-derived NBS clones detected low-or moderate-copy soybean DNA sequences and belongs to 1 of 11 different classes. Sequence analysis showed that all PCR clones encode three motifs (P-loop, kinase-2, and kinase-3a) of NBS nearly identical to those in N and RPS2. The intervening region between P-loop and kinase-3a of the 11 classes has high (26% average) amino acid sequence similarity to the N gene although not as high (19% average) to RPS2. These 11 classes represent a superfamily of NBS-containing soybean genes that are homologous to N and RPS2. Each class or subfamily was assessed for its positional association with known soybean disease-resistance genes through near-isogenic line assays, followed by linkage analysis in F2 populations using restriction fragment length polymorphisms. Five of the 11 subfamilies have thus far been mapped to the vicinity of known soybean genes for resistance to potyviruses (Rsv1 and Rpv), Phytophthora root rot (Rps1, Rps2, and Rps3), and powdery mildew (rmd). The conserved N- or RPS2-homologous NBS sequences and their positional associations with mapped soybean-resistance genes suggest that a number of the soybean disease-resistance genes may belong to this superfamily. The candidate subfamilies of NBS-containing genes identified by genetic mapping should greatly facilitate the molecular cloning of disease-resistance genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have isolated a new hemoglobin gene from soybean. It is expressed in cotyledons, stems of seedlings, roots, young leaves, and in some cells in the nodules that are associated with the nitrogen-fixing Bradyrhizobium symbiont. This contrasts with the expression of the leghemoglobins, which are active only in the infected cells of the nodules. The deduced protein sequence of the new gene shows only 58% similarity to one of the soybean leghemoglobins, but 85-87% similarity to hemoglobins from the nonlegumes Parasponia, Casuarina, and barley. The pattern of expression and the gene sequence indicate that this new gene is a nonsymbiotic legume hemoglobin. The finding of this gene in legumes and similar genes in other species strengthens our previous suggestion that genomes of all plants contain hemoglobin genes. The specialized leghemoglobin gene family may have arisen from a preexisting nonsymbiotic hemoglobin by gene duplication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidative burst is likely the most rapid defense response mounted by a plant under pathogen attack, and the generated oxidant species may be essential to several subsequent defense responses. In our effort to characterize the signal-transduction pathways leading to rapid H2O2/O2- biosynthesis, we have examined the role of protein phosphorylation in this resistance mechanism. K-252a and staurosporine, two protein-kinase inhibitors, were found to block the oxidative burst in a concentration-dependent manner. When added during H2O2 generation, the burst was observed to rapidly terminate, suggesting that continuous phosphorylation was essential for its maintenance. Importantly, phosphatase inhibitors (calyculin A and okadaic acid) were found to induce the oxidative burst in the absence of any additional stimulus. This may suggest that certain kinases required for the burst are constitutively active and that stabilization of the phosphorylated forms of their substrates is all that is required for burst activity. In autoradiographs of elicited and unstimulated cells equilibrated with 32PO4(3-), several phosphorylated polypeptide bands were revealed that could represent proteins essential for the burst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large recombinant inbred population of soybean has been characterized for 220 restriction fragment-length polymorphism (RFLP) markers. Values for agronomic traits also have been measured. Quantitative trait loci (QTL) for height, yield, and maturity were located by their linkage to RFLP markers. QTL controlling large amounts of trait variation were analyzed for the dependence of trait variation on particular alleles at a second locus by comparing cumulative distributions of the trait for each genotype (four genotypes per pair of loci). Interesting pairs of loci were analyzed statistically with maximum likelihood and Monte Carlo comparison of additive and epistatic models. For each locus affecting height, variation was conditional upon the presence of a particular allele at a second unlinked locus that itself explained little or no trait variation. The results show that interactions between QTL are frequent and control large effects. Interactions distinguished between different QTL in a single linkage group and between QTL that affect different traits closely linked to one RFLP marker--i.e., distinguished between pleiotropy and closely linked genes. The implications for the evolution of inbreeding plants and for the construction of agronomic breeding strategies are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cover title.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cover title.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliographies.